• Poly Solar Cell High Efficiency 156mmx156mm 6inch,3BB/4BB System 1
  • Poly Solar Cell High Efficiency 156mmx156mm 6inch,3BB/4BB System 2
  • Poly Solar Cell High Efficiency 156mmx156mm 6inch,3BB/4BB System 3
Poly Solar Cell High Efficiency 156mmx156mm 6inch,3BB/4BB

Poly Solar Cell High Efficiency 156mmx156mm 6inch,3BB/4BB

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

Solar cells are typically named after the semiconducting material they are made of. These materials must have certain characteristics in order to absorb sunlight.

Material:

Monocrystalline Silicon

Character:

solar panel price

Silicon:

Grade A class

EVA:

Material

Packaging & Delivery

Packaging Detail:carton package
Delivery Detail:20days

 

Mechanical data and design

Format

156 mm × 156 mm ± 0.5 mm

Thickness

210 μm ± 40 μm

Front(-)

1.5mm bus bars (silver),blue anti-reflection coating (silicon nitride)

Back (+)

2.5 mm wide soldering pads (silver) back surface field (aluminium)

 

2.Electrical Characteristic

Efficiency (%)

Pmpp (W)

Umpp (V)

Impp (A)

Uoc (V)

Isc (A)

FF (%)

17.25

4.197

0.524

7.992

0.62

8.458

80.03%

17

4.137

0.524

7.876

0.619

8.353

80.01%

16.75

4.076

0.522

7.81

0.617

8.286

79.73%

16.5

4.015

0.518

7.746

0.613

8.215

79.73

16.25

3.955

0.515

7.683

0.61

8.144

79.61%

16

3.894

0.512

7.613

0.608

8.075

79.31%

15.75

3.833

0.51

7.534

0.605

8.058

78.62%

15.5

3.772

0.508

7.453

0.604

8.02

77.87%

15.25

3.771

0.505

7.35

0.604

9.997

76.83%

15

3.65

0.503

7.271

0.604

7.989

75.64%

14.5

3.529

0.499

7.067

0.604

7.988

73.14%

14

3.407

0.499

6.833

0.604

7.833

72.01%

 

 Some cells are designed to handle sunlight that reaches the Earth's surface, while others are optimized for use in space. Solar cells can be made of only one single layer of light-absorbing material (single-junction) or use multiple physical configurations (multi-junctions) to take advantage of various absorption and charge separation mechanisms.

Solar cells can be classified into first, second and third generation cells. The first generation cells—also called conventional, traditional or wafer-based cells—are made of crystalline silicon, the commercially predominant PV technology, that includes materials such as polysilicon and monocrystalline silicon. Second generation cells are thin film solar cells, that include amorphous silicon, CdTe and CIGS cells and are commercially significant in utility-scalephotovoltaic power stations, building integrated photovoltaics or in small stand-alone power system. The third generation of solar cells includes a number of thin-film technologies often described as emerging photovoltaics—most of them have not yet been commercially applied and are still in the research or development phase. Many use organic materials, often organometallic compounds as well as inorganic substances. Despite the fact that their efficiencies had been low and the stability of the absorber material was often too short for commercial applications, there is a lot of research invested into these technologies as they promise to achieve the goal of producing low-cost, high-efficiency solar cells.

 

 

 

 

 

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords