• Off-Grid Solar Power System 4KW High Efficiency System 1
  • Off-Grid Solar Power System 4KW High Efficiency System 2
Off-Grid Solar Power System 4KW High Efficiency

Off-Grid Solar Power System 4KW High Efficiency

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1 pc
Supply Capability:
10000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Description of Product

Off-Grid Solar Power System is consisted of solar panel, solar charge controller, inverter, battery, mounting rack and cables.

(1).Grid-connected, send power to city grid

(2).MPPT technology, wide range of working voltage

(3).Simply Wiring, easy installation, customized design for your projects

(4).Low investment & long term feedback

 Off-Grid Solar Power System 4KW High Efficiency

2. Off-Grid Features

1. Off grid solar power system is mainly used for application with relatively-small power consumption, and the areas have no grid network coverage, or grid power is unstable or outage condition.  

2. It’s composed of solar panels, hybrid solar inverter, battery bank, solar panel mounting racks, and other accessories required fora complete home solar power system.

3. The battery bank gives a stable power output to the solar inverter which converts DC to AC to power loads, and provides power backup in rainy or cloudy days.

4. The solar panels generate electricity at daytime and charge the battery bank .

5. The off grid home solar power system provides grid power bypass in case of battery power shortage when sunshine is not enough.

6. All the off grid home solar power system configurations are worked out by scientific calculation and design.

Ref No.

4KW

Solar Panel

Type: Monocrystalline   Silicon PV Module  

Max Power: 250W

QTY:12 pcs

Controller-Inverter

Integrator

Rated Ouput Power: 4000W

Rated DC Voltage: 48V 

QTY:1 pcs

Battery

12V/150AH per piece

QTY:12 pcs

Solar Panel Rack

Roof type mounting rack,   anodized aluminum material, including complete fittings

(Other type of racks can be   customized as per client's requirement)

QTY:1 pcs

Cables

International standard, with   specification suitable for solar system, BV1*10

QTY:80m

3.The Pictures of Product

Off-Grid Solar Power System 4KW High Efficiency

Off-Grid Solar Power System 4KW High Efficiency

4.FAQ

Q1: What is the business type for the company?

A1: We are one of the biggest manufacturers inBejing.Chnia. Which is a high tech PV enterprise dedicated to the research, development, production and sales.

 

Q2: How long solar panel warranty can you offer?

A2: 10-Year product warranty,25-year linear power output warranty

If there is any quality problem, we will pay for freight and send free parts to you.

 

Q3: How many certificates do you have?

A3: We have 16 certificates,such as CE, TUV, UL, and so on.

 

Q4: Can I be the agent for you?

A4: Yes,We can discuss some information.

 

Q5: How to get a sample?How can cooperation with us

A5: contact us now.

Q:How do solar energy systems impact water usage?
Solar energy systems have a positive impact on water usage as they do not require water for generation unlike traditional power plants. This helps conserve water resources and reduces strain on water supplies, making solar energy a sustainable and environmentally friendly option for meeting our energy needs.
Q:Can a solar energy system be installed on a metal roof?
Yes, a solar energy system can be installed on a metal roof. In fact, metal roofs are often considered ideal for solar panel installations due to their durability, ease of installation, and compatibility with mounting systems. The metal roof provides a sturdy and secure foundation for the solar panels, allowing for a reliable and long-lasting solar energy system.
Q:What is net metering?
Net metering is a billing arrangement that allows residential and commercial customers with solar panels or other renewable energy systems to receive credit for any excess electricity they generate and send back to the grid.
Q:Can solar energy systems be used in areas with limited access to sunlight due to shading from nearby buildings or structures?
Areas with limited access to sunlight due to shading from nearby buildings or structures can still utilize solar energy systems, albeit with potential efficiency implications. It is crucial to evaluate the degree of shading and its impact on the solar panels' electricity generation capabilities. In cases where shading is minimal and temporary, such as when shadows are cast during specific times of the day, solar energy systems can remain feasible. However, if shading persists throughout the day and covers a significant portion of the panels, it can substantially diminish the system's overall energy output. To mitigate the effects of shading, several options are available. One alternative is to optimize the placement of solar panels to maximize exposure to sunlight. This can be achieved by adjusting the panels' tilt angle and orientation or implementing tracking systems that follow the sun's trajectory throughout the day. Another possibility is to employ micro-inverters or power optimizers, which can enhance the output of individual solar panels, even if some are partially shaded. In more extreme shading scenarios, it may be necessary to explore alternative energy solutions or make modifications to nearby structures to minimize shading. This could entail trimming or removing trees, installing reflective surfaces on adjacent buildings to redirect sunlight, or utilizing solar panels on other structures with better access to sunlight. In conclusion, while shading from nearby buildings or structures can reduce the efficiency of solar energy systems, there are still viable options available for areas with limited access to sunlight. It is imperative to assess the specific shading conditions and determine the most suitable solution to maximize energy production.
Q:Can solar energy systems be used in areas with frequent snowfall?
Yes, solar energy systems can still be used in areas with frequent snowfall. While snow can temporarily reduce the efficiency of solar panels, it does not render them completely useless. Proper installation and maintenance, such as tilt adjustments or snow removal, can optimize their performance in snowy conditions. Additionally, advancements in technology, such as anti-reflective coatings and self-cleaning panels, are making solar energy systems more resilient to snow accumulation.
Q:Can solar energy systems be used in areas with limited water resources?
Areas with limited water resources can use solar energy systems effectively. Solar energy systems rely on the sun's radiation to produce electricity or heat, eliminating the need for large amounts of water. Unlike traditional power plants, which rely on water for cooling and steam generation, solar energy systems do not require water-intensive processes. Solar photovoltaic (PV) systems convert sunlight directly into electricity, and they operate without the need for water. These systems consist of solar panels that capture sunlight and convert it into electricity through the photovoltaic effect. Therefore, they can be installed in areas with limited water resources without any impact on their functionality. Solar thermal systems, on the other hand, use sunlight to heat a fluid, such as water or oil, which is then used for electricity generation or heating. While these systems may require some water for cleaning or maintenance, the water requirements are relatively low compared to traditional power plants. Additionally, advancements in solar thermal technology have led to the development of dry-cooling systems that significantly reduce water consumption. Furthermore, solar energy systems can be combined with other technologies to further minimize water usage. Solar-powered desalination plants, for example, can convert seawater or brackish water into freshwater through reverse osmosis, without relying on traditional energy sources or fossil fuels. This integration of solar energy and desalination can provide clean drinking water in areas with limited freshwater resources, alleviating the strain on water supplies. In conclusion, solar energy systems are suitable for areas with limited water resources as they primarily operate on sunlight and require minimal water for functioning. Using solar power not only reduces greenhouse gas emissions and dependence on fossil fuels but also addresses water scarcity issues in these regions.
Q:How long do solar energy systems last?
Solar energy systems typically have a lifespan of 25 to 30 years, with some components lasting even longer. However, regular maintenance and occasional replacements may be required to ensure optimal performance and efficiency throughout their lifetime.
Q:Can solar energy systems be used in areas with high pollution?
Yes, solar energy systems can still be used in areas with high pollution. While pollution may reduce the efficiency of solar panels to some extent, they can still generate electricity even in polluted environments. Furthermore, using solar energy can help reduce the dependency on fossil fuels and contribute to reducing pollution over time.
Q:How does the angle of solar panels affect their performance?
The performance and overall efficiency of solar panels are greatly influenced by their angle. Various factors, including geographical location, time of year, and the specific application, determine the ideal angle at which solar panels should be positioned. When solar panels are correctly angled, they can capture the maximum amount of sunlight throughout the day. The angle directly impacts the amount of direct sunlight that reaches the panels, thus affecting their energy output. If the angle is too steep, the panels may not receive direct sunlight, resulting in reduced energy production. Conversely, if the angle is too shallow, the panels may not capture as much sunlight, leading to lower efficiency. Generally, solar panels are installed at an angle equal to the latitude of the location. However, this may not always be the most optimal angle. For instance, in regions with abundant sunlight year-round, a slight tilt towards the equator could enhance the panels' performance. Seasonal adjustments may also be required to account for the changing position of the sun throughout the year. This can be achieved by manually adjusting the angle or utilizing solar tracking systems that automatically follow the sun's path. It is important to note that the angle is not the only factor affecting the performance of solar panels. Shading, temperature, and the quality of the panels themselves also influence their efficiency. Therefore, it is crucial to conduct a comprehensive analysis and seek professional advice to determine the optimal angle for solar panels. This ensures maximum energy production and a favorable return on investment.
Q:Can solar panels be used to power streetlights?
Yes, solar panels can be used to power streetlights. Solar panels convert sunlight into electricity, which can be stored in batteries and used to power streetlights during the night. This sustainable and renewable energy source is increasingly being adopted for street lighting systems to reduce reliance on the grid and decrease carbon emissions.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords