Aluminium Ingot with High Purity Virgin from China
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Pure Aluminum Ingot Used for Industry
1.Structure of Aluminum Ingot Description
Aluminum Ingot is with the AL as the main chemical composition. Aluminum Ingot is used for industry,such as automobile,pinning and weaving,electron broadly and so on. Aluminum Ingot has the following advantages: easy control and operation, fast melting.
2.Main Features of the Aluminum Ingot
•High Purity
•Easy control and operation
•High strength
•Fast melting
•Competitive price
•Best Service
3. Aluminum Ingot Images
4. Aluminum Ingot Specification
Grade | Chemical Composition % | |||||||||
Al≥ | impurities ≤ | |||||||||
Si | Fe | Cu | Ga | Mg | Zn | Mn | others | Sum | ||
Al99.9 | 99.90 | 0.50 | 0.07 | 0.005 | 0.02 | 0.01 | 0.025 | - | 0.010 | 0.10 |
Al99.85 | 99.85 | 0.80 | 0.12 | 0.005 | 0.03 | 0.02 | 0.030 | - | 0.015 | 0.15 |
Al99.7 | 99.70 | 0.10 | 0.20 | 0.010 | 0.03 | 0.02 | 0.030 | - | 0.030 | 0.30 |
Al99.6 | 99.60 | 0.16 | 0.25 | 0.010 | 0.03 | 0.03 | 0.030 | - | 0.030 | 0.40 |
Al99.5 | 99.50 | 0.22 | 0.30 | 0.020 | 0.03 | 0.05 | 0.050 | - | 0.030 | 0.50 |
Al99.00 | 99.00 | 0.42 | 0.50 | 0.020 | 0.03 | 0.05 | 0.050 | - | 0.050 | 1.00 |
5.FAQ of Aluminum Ingot
We have organized several common questions for our clients,may help you sincerely:
①How about your company?A world class manufacturer & supplier of castings forging in carbon steel and alloy steel,is one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.
②How to guarantee the quality of the products?
We have established the international advanced quality management system,every link from raw material to final product we have strict quality test;We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.
③How long can we receive the product after purchase?
In the purchase of product within three working days, We will arrange the factory delivery as soon as possible. The pecific time of receiving is related to the state and position of customers.Commonly 7 to 10 working days can be served.
- Q:How are aluminum ingots used in the production of consumer goods?
- Aluminum ingots are used in the production of consumer goods as a raw material for various manufacturing processes. They can be melted down and shaped into different forms such as sheets, bars, or rods, which are then used to create a wide range of products like cans, foils, kitchen utensils, automotive parts, electronics, and packaging materials. The lightweight and corrosion-resistant properties of aluminum make it a popular choice for consumer goods as it offers durability, flexibility, and energy efficiency.
- Q:What does aluminium ingot blacken because of temperature? Rain? Aluminium oxide? Iron salt?
- Is the oxidation of alumina. The color is not necessarily to generate the first white alumina, then gray green, finally is black. Because there is water vapor. Laboratory control conditions, can certainly get white alumina. In reality are black.
- Q:What are the safety precautions when handling aluminum ingots?
- Some safety precautions when handling aluminum ingots include wearing appropriate personal protective equipment such as gloves, safety glasses, and a face shield to protect against potential hazards. It is also important to handle the ingots with care to prevent injury from sharp edges or falling objects. In addition, proper lifting techniques should be used to avoid strain or back injuries. Fire safety measures should be implemented, as aluminum can react with water or air at high temperatures. Overall, following proper handling procedures and being aware of potential risks can help ensure the safety of individuals working with aluminum ingots.
- Q:What are the different alloying elements used in aluminum ingots?
- Aluminum ingots can be enhanced with various alloying elements to improve their properties and characteristics. Some commonly utilized alloying elements are: 1. Copper (Cu): To increase the strength and hardness of the alloy, copper is frequently added to aluminum ingots. Copper-aluminum alloys, also known as aluminum bronzes, exhibit outstanding corrosion resistance and find extensive usage in marine applications. 2. Zinc (Zn): Aluminum ingots often incorporate zinc as an alloying element to enhance the metal's castability. Aluminum-zinc alloys, like the 7000 series, possess high strength, good corrosion resistance, and are prevalent in aerospace and automotive applications. 3. Magnesium (Mg): Magnesium is a widely employed alloying element in aluminum ingots, especially in the 5000 series alloys. It improves aluminum's strength, machinability, and provides excellent corrosion resistance. Aluminum-magnesium alloys are commonly utilized in structural applications. 4. Silicon (Si): The addition of silicon to aluminum ingots improves their casting characteristics and reduces solidification shrinkage. Aluminum-silicon alloys, such as the 4000 series, exhibit good fluidity and are often employed in automotive and electronic components. 5. Manganese (Mn): Aluminum ingots can incorporate manganese as an alloying element to increase strength and improve corrosion resistance. Aluminum-manganese alloys, like the 3000 series, possess good formability and are commonly used in the construction and packaging industries. 6. Chromium (Cr): Aluminum ingots can be enriched with chromium to enhance their heat resistance and mechanical properties. Aluminum-chromium alloys, such as the 2000 series, are frequently employed in aerospace and high-temperature applications. 7. Lithium (Li): In small quantities, lithium, a lightweight and highly reactive element, is utilized to create aluminum-lithium alloys with high strength and low density. These alloys are primarily utilized in aerospace applications where weight reduction is crucial. These represent only a fraction of the alloying elements employed in aluminum ingots. The selection of alloying elements depends on the desired properties of the final product and its intended application.
- Q:Can aluminum ingots be anodized?
- Yes, aluminum ingots can be anodized. Anodizing is a process that involves creating an oxide layer on the surface of aluminum, which can be done on both raw aluminum and aluminum alloys. This process enhances the metal's corrosion resistance, improves its appearance, and allows for coloring or dyeing options.
- Q:What is the casting process for aluminum ingots?
- To produce high-quality, uniform aluminum ingots, the casting process involves various steps. Initially, the raw aluminum is melted in a furnace at temperatures above 660 degrees Celsius (1220 degrees Fahrenheit). Following this, the molten aluminum is transferred to a holding furnace, where it is maintained at a consistent temperature to avoid solidification. Next, a mold is prepared for casting the aluminum ingots. Usually made of steel or cast iron, the mold is preheated to minimize thermal shock. Additionally, a release agent is applied to the mold to prevent the ingot from adhering to it. Once the mold is prepared, the molten aluminum is poured into it. Depending on the production scale, this pouring process can be done manually or using automated equipment. The molten aluminum fills the mold, taking on the desired ingot shape. After pouring, the mold is allowed to cool and solidify the aluminum. The cooling time varies depending on the ingot's size and thickness. As the aluminum cools, it undergoes a phase transformation from liquid to solid, resulting in a solid ingot. Once solidified, the ingot is removed from the mold. This can be achieved either by manual removal or through mechanical means like vibrators or hydraulic presses. Finally, the ingots typically undergo further processing to enhance their mechanical properties and appearance. This may involve heat treatment, surface finishing, homogenization, removal of surface defects, or the application of protective coatings. In conclusion, the casting process for aluminum ingots is a meticulous and intricate operation. It necessitates precise temperature control, meticulous mold preparation, and subsequent post-processing steps to produce high-quality ingots suitable for further aluminum processing and applications.
- Q:What are the advantages of the CNC process for aluminum and die cast aluminum?
- The main properties, namely strength, hardness and wear resistance, are in accordance with the national standard GB6063. The utility model has the advantages of light weight, only 2.8, no rust, fast design change, low die input and longitudinal elongation up to more than 10 meters. There is light, matte of aluminum processing appearance, the process of anodic oxidation treatment, surface treatment of oxide film thickness reaches 0.12m/m. The wall thickness of aluminum profile is chosen according to the optimization of product design. The thicker the market is, the better the design of sectional structure should be. It can be uneven in 0.5~5mm. Layman thinks that the thicker and tougher, it is the wrong view.
- Q:How are impurities removed from aluminum ingots?
- Impurities are removed from aluminum ingots through a process called refining or purification. There are several methods used to achieve this, including: 1. Fluxing: Fluxes, such as chlorine or sodium chloride, are added to the molten aluminum to react with the impurities. This process forms compounds that are more easily removed as slag or dross. 2. Electrolytic refining: In this method, the impure aluminum ingots are immersed in an electrolyte solution and subjected to an electric current. The impurities are attracted to the anode, where they accumulate as a residue, while the purified aluminum collects at the cathode. 3. Centrifugal separation: This technique involves spinning the molten aluminum in a centrifuge, which causes the denser impurities to migrate towards the outer edge. The purified aluminum is then collected from the center. 4. Filtration: Filtration can be used to remove solid impurities from the molten aluminum. Filters made of materials like ceramic or graphite are employed, which trap the impurities while allowing the purified aluminum to pass through. 5. Vacuum treatment: In this method, the molten aluminum is subjected to a vacuum environment, which helps to remove volatile impurities like hydrogen and some low-boiling-point metals. The reduced pressure facilitates the removal of these impurities by vaporization. It is important to note that the specific method chosen for impurity removal depends on factors such as the type and concentration of impurities, the desired level of purity, and the cost-effectiveness of the chosen process. Different industries and applications may require different levels of purity, and thus, the refining process may vary accordingly.
- Q:Where can I get aluminium ingots in cans?
- Although aluminum prices now have to rise, but now is high, a large number of aluminum ingots, and some hot money funds customs Tun once sold, small is the crowning calamity. Cautious.
- Q:How are aluminum ingots used in the production of aerospace components?
- Aluminum ingots play a crucial role in the production of aerospace components due to their unique properties and characteristics. These ingots are melted down and refined to create high-quality aluminum alloys that are specifically designed to meet the demanding requirements of the aerospace industry. One of the main reasons aluminum is widely used in aerospace manufacturing is its low density. Aluminum is a lightweight material, which helps reduce the overall weight of the aircraft, resulting in improved fuel efficiency and increased payload capacity. This is particularly crucial in the aerospace industry, where every kilogram saved translates into significant cost savings and operational advantages. Another key advantage of aluminum ingots is their excellent strength-to-weight ratio. By alloying aluminum with other elements such as copper, magnesium, or zinc, aerospace engineers can create alloys that possess exceptional strength and structural integrity while maintaining a low weight. These alloys are then used to manufacture various components, such as airframes, wings, fuselage sections, and structural supports, which need to withstand extreme conditions and stresses during flight. Furthermore, aluminum ingots offer exceptional corrosion resistance, making them ideal for aerospace applications. Aircraft are subjected to harsh environments, including exposure to moisture, saltwater, and temperature fluctuations. Aluminum alloys, derived from these ingots, possess a natural oxide layer that provides a protective barrier against corrosion, ensuring the longevity and durability of the aerospace components. Additionally, aluminum ingots can be easily cast, machined, and formed into intricate shapes and designs, allowing for the production of complex aerospace components with high precision. This versatility is essential in the aerospace industry, where intricate and custom parts are required to meet the specific needs and requirements of different aircraft models. In summary, aluminum ingots are essential in the production of aerospace components due to their lightweight nature, excellent strength-to-weight ratio, corrosion resistance, and versatility in manufacturing processes. By utilizing aluminum ingots and their derived alloys, aerospace manufacturers can achieve the perfect balance between performance, durability, and efficiency in their aircraft, contributing to the advancement and safety of the aerospace industry.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Aluminium Ingot with High Purity Virgin from China
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1000 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches