• Reinforcing Deformed Bar Grade BS4449:1997 System 1
  • Reinforcing Deformed Bar Grade BS4449:1997 System 2
  • Reinforcing Deformed Bar Grade BS4449:1997 System 3
  • Reinforcing Deformed Bar Grade BS4449:1997 System 4
  • Reinforcing Deformed Bar Grade BS4449:1997 System 5
  • Reinforcing Deformed Bar Grade BS4449:1997 System 6
Reinforcing Deformed Bar Grade BS4449:1997

Reinforcing Deformed Bar Grade BS4449:1997

Ref Price:
$280.00 - 320.00 / m.t. get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
50 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Deformed Steel
Shape:
Steel Round Bar

Reinforcing Deformed Bar Grade BS4449:1997

Details of Reinforcing Deformed Bar Grade BS4449:1997

Name

Deformed Bar

Shape

Round Bar

Standard

1.GB1499.2-2007, HRB335, HRB400E

2. ASTM A615 Gr.40, Gr.60

3.BS4449/1997

Diameter

6mm-50mm

Length

6m, 8m, 9m,12m as standard or as request

Test

SGS/UT 100% Elements Testing

Certificate:

ISO/Mill Certificate

Service:

24 hours online service /

more than 20 years trading and manufacture 

Quality Assurance:

the third party inspection, such as SGS, BV, TUV…etc. is acceptable

Packaging Details:

Seaworthy Packaging or as per customer's packing instruction

 

Specification of Reinforcing Deformed Bar Grade BS4449:1997

Standard

Grade

Yield Strength Mpa

Tensile Strength
Mpa

Elongation%

BS4449:1997

250

250

295

22

460A

460

485

12

460B

460

500

15

GB1499.2-2007

HRB335/335E

335

455

17

HRB400/400E

400

540

17

HRB500/500E

500

630

16

ASTM A615 & A615M-04a

GRADE40

280

420

12

GRADE60

420

620

9

GRADE75

520

690

7

JIS G3112-2004

SD295A

 ≥ 295

440-600

17

SD295B

295-390

≥ 440

17

SD345

345-440

≥490

19

SD390

390-510

 560

17

SD490

490-625

≥ 620

13

Size
(MM)

WEIGHT
(KG/M)

WEIGHT
(KG/PCS)

QUANTITY
(1TONS/PCS)

LENGTH 6M

LENGTH 12M

LENGTH 6M

LENGTH 12M

6

0.222

1.332

2.664

751

375

8

0.395

2.37

4.74

422

211

10

0.617

3.702

7.404

270

135

12

0.888

5.328

10.656

188

94

14

1.21

7.26

14.52

138

69

16

1.58

9.48

18.96

106

53

18

2

12

24

83

42

20

2.47

14.82

29.64

67

34

22

2.98

17.88

35.76

56

28

25

3.85

23.1

46.2

43

22

28

4.83

28.98

57.96

35

17

32

6.31

37.86

75.72

26

13

36

7.99

47.94

95.88

21

10

40

9.87

59.22

118.44

17

8

50

15.42

92.52

185.04

11

5

 

CNBM Introduction of Reinforcing Deformed Bar Grade BS4449:1997 Supplier

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Reinforcing Deformed Bar Grade BS4449:1997

Reinforcing Deformed Bar Grade BS4449:1997

Packaging & Delivery of Reinforcing Deformed Bar Grade BS4449:1997

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show

Reinforcing Deformed Bar Grade BS4449:1997

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: How is high-temperature steel used in power generation equipment?
High-temperature steel is used in power generation equipment due to its exceptional heat resistance properties. It is specifically employed in components such as boiler tubes, turbine blades, and exhaust systems, where intense heat and pressure are present. This steel's ability to withstand extreme temperatures ensures efficient energy conversion and maximizes the overall performance and reliability of power generation equipment.
Q: What are the different methods of surface lapping for special steel?
There are several methods of surface lapping for special steel, including abrasive lapping, diamond lapping, and chemical lapping. Abrasive lapping involves using an abrasive material, such as silicon carbide or aluminum oxide, to remove small amounts of material from the surface of the steel. Diamond lapping, on the other hand, utilizes diamond particles to achieve a high level of precision and smoothness. Chemical lapping involves using a chemical compound that reacts with the steel surface, selectively removing material to achieve the desired finish. Each method has its own advantages and is chosen based on the specific requirements of the steel and the desired outcome.
Q: What are the common challenges in heat treating special steel?
Heat treating special steel can present a variety of challenges. One common challenge is achieving the desired hardness and strength while maintaining the desired microstructure. Special steels often require specific heat treatment processes, such as quenching and tempering, to achieve the desired mechanical properties. However, the high alloy content of these steels can lead to difficulties in achieving uniform heat distribution and controlling the cooling rate during quenching, which in turn can result in inconsistent hardness and potential distortion. Another challenge in heat treating special steel is managing residual stresses. During the heating and cooling process, differential thermal expansion and contraction can cause stress to build up within the steel, leading to potential cracking or distortion. Special care must be taken to minimize these stresses through proper heat treatment techniques, such as preheating and controlled cooling rates. Special steels often have stringent cleanliness requirements, as impurities or non-metallic inclusions can negatively impact their mechanical properties. Ensuring the cleanliness of the steel prior to heat treatment can be challenging and may require additional steps such as degreasing, pickling, or using protective atmospheres during heat treatment. Furthermore, some special steels are highly sensitive to overheating, which can lead to grain growth and loss of desired properties. Precise temperature control and monitoring are crucial to prevent overheating and ensure consistent results. Lastly, special steels may have specific time-temperature transformation (TTT) and continuous cooling transformation (CCT) characteristics that need to be considered during heat treatment. Understanding and adhering to the appropriate heating and cooling cycles are essential for achieving the desired microstructure and properties. In summary, the common challenges in heat treating special steel include achieving the desired hardness and microstructure, managing residual stresses, ensuring cleanliness, preventing overheating, and adhering to specific time-temperature transformation characteristics. Overcoming these challenges requires expertise, precise control, and adherence to strict heat treatment protocols.
Q: Is special steel suitable for manufacturing precision components?
Yes, special steel is highly suitable for manufacturing precision components. Special steel is a type of steel that is specifically engineered to possess exceptional properties, such as high strength, hardness, and resistance to wear, corrosion, and heat. These characteristics make it an ideal choice for manufacturing precision components that require tight tolerances, accuracy, and reliability. The inherent strength and hardness of special steel allow for the production of durable and long-lasting precision components. This is particularly important in industries where components are subjected to high stress and heavy loads, such as aerospace, automotive, and machinery manufacturing. Special steel's resistance to wear and corrosion ensures that the precision components can withstand harsh operating environments and maintain their functionality over time. Furthermore, special steel's excellent heat resistance makes it suitable for precision components that are exposed to elevated temperatures. This is especially relevant in industries like aerospace and power generation, where components need to withstand extreme heat without compromising their performance. Special steel also offers excellent machinability, which is crucial for manufacturing precision components with intricate designs and complex geometries. It can be easily shaped, cut, and formed into various shapes and sizes, allowing for the production of intricate and precise components. Overall, the unique properties of special steel, including high strength, hardness, resistance to wear, corrosion, and heat, as well as excellent machinability, make it highly suitable for manufacturing precision components. Its use ensures the production of high-quality components that meet the strict requirements of precision applications.
Q: What are the heat treatment processes used for special steel?
The heat treatment processes commonly used for special steel include annealing, tempering, quenching, and case hardening.
Q: How does special steel perform in high-temperature applications?
Special steel performs exceptionally well in high-temperature applications due to its unique composition and properties. It exhibits excellent heat resistance, maintaining its strength and hardness even at elevated temperatures. Special steel also demonstrates exceptional thermal stability, preventing deformation and maintaining dimensional stability under extreme heat. Additionally, it possesses excellent oxidation and corrosion resistance, ensuring longevity and durability in high-temperature environments. Overall, special steel is specifically designed to withstand and excel in demanding high-temperature applications.
Q: What are the challenges in machining special steel with high hardness?
One of the major challenges in machining special steel with high hardness is the excessive tool wear. High hardness steel tends to be abrasive and causes rapid tool degradation, leading to frequent tool changes and increased production costs. Additionally, the high hardness makes it difficult to achieve precise cuts and maintain tight tolerances, affecting the overall quality of the machined parts. Another challenge is the generation of high cutting forces, which can strain the machine and potentially cause vibrations or distortions in the workpiece. Therefore, machining special steel with high hardness requires specialized tooling, advanced cutting strategies, and careful monitoring to overcome these challenges and achieve satisfactory results.
Q: What are the main factors affecting the machinability of special steel?
The main factors affecting the machinability of special steel include the steel's composition, hardness, and microstructure. Additionally, factors such as cutting tool materials and geometry, cutting speeds, and feed rates can also significantly impact the machinability of special steel.
Q: What are the applications of special steel in the oil and gas supply chain?
Special steel is widely used in the oil and gas supply chain due to its exceptional properties. It is used for various applications such as pipes, valves, and fittings, where its high strength, corrosion resistance, and ability to withstand extreme temperatures and pressures are crucial. Special steel is also used in equipment like drilling tools, offshore platforms, and storage tanks, ensuring reliability and durability in challenging environments. Additionally, it is employed in the construction of pipelines, providing a reliable and safe mode of transportation for oil and gas products.
Q: How are copper alloys used in electrical applications?
Copper alloys are extensively used in electrical applications due to their excellent electrical conductivity and thermal properties. They are used in the production of electrical wires, connectors, and busbars, ensuring efficient transmission of electricity. Copper alloys also offer good corrosion resistance, making them suitable for outdoor and marine electrical systems. Additionally, their high strength and ductility allow for easy fabrication and installation in various electrical components.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords