• Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality System 1
  • Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality System 2
  • Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality System 3
  • Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality System 4
  • Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality System 5
Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality

Solar Energy Systems Spain ☆☆☆stock on sale 255w poly solar panel 0.45/w!!!!☆☆☆ a grade good quality

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1 watt
Supply Capability:
10000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Product Description:

Hot Sale !!! Quality and Safety of 245w-320w Poly Solar Panel

1. Rigorous quality control meets the highest international standards.

2. High-transmissivity low-iron tempered glass, strong aluminium frame.

3. Using UV-resistant silicon.

4. IS09001/14001/CE/TUV/UL  

 

 

Warranties of 245w-320w Poly Solar Panel

1. 10 years limited product warranty

2. 15 years at 90% of the minimal rated power output

3. 25 years at 80% of the minimal rated power output

 

Technical date of 245w-320w Poly Solar Panel

ITEM NO.:

Mono 125*125 cell ,36pcs . Power range from 80Wp-100Wp

Maximum Power(W)

 80

 85

90

95

100

Optimum Power Voltage(Vmp)

 17.81

 17.89

17.94

17.99

18.06

Optimum Operatige Current(Imp)

 4.78

 4.91

5.12

 5.35

 5.59

Open Circuit Voltage(Voc)

21.98

22.05

22.14

 22.28

 22.45

Short Circuit Current(Isc)

 4.95

 5.15

 5.36

 5.65

5.84

Solar Cell:

125*125 Mono

Number of Cell(pcs)

4*9

Brand Name of Solar Cells

 JA Cell, Bluesun Cell

Size of Module(mm)

1580*808*35

Caple & Connector Type

Pass the TUV Certificate

Frame(Material Corners,etc.)

Aluminium-alloy

Backing (Brand Type)

TPT

Cell Efficiency for 100W(%)

15.8%

Weight Per Piece(KG)

12.0KG

FF (%)

70-76%

Junction Box Type

Pass the TUV Certificate

Tolerance Wattage(e.g.+/-5%)

±3%, or 0-3%

Front Glass Thikness(mm)

3.2

Temperature Coefficients of Isc(%)

+0.04

Temperature Coefficients of Voc(%)

-0.38

Temperature Coefficients of Pm(%)

-0.47

Temperature Coefficients of Im(%)

+0.04

Temperature Coefficients of Vm(%)

-0.38

Temperature Range

 -40°C to +85°C

Surface Maximum Load Capacity

2400Pa

Allowable Hail Load

23m/s ,7.53g

Bypass Diode Rating(A)

12

Warranty

90% of 10 years,80% of 25 years.

Standard Test Conditions

AM1.5   1000W/ 25 +/-2°C

Packing

 carton or pallet

1*20'

25 Pallets / 450pcs

1*40'STD

25 Pallets / 100pcs

Features of our products:
• High conversion efficiency mono/poly-crystalline amorphous silicon solar cells
• Modules incorporate high performance bypass diodes to minimize the power drop caused by shading
• High transmittance, low-iron tempered glass
• High performance EVA encapsulant to prevent destroying and water.
• AI frame: without screw, corner connection. 8 holes on the frame can be installed easily
• Good performance of preventing from atrocious weather such as wind and hails
• Certifications: CE IEC TUV VDE UL, Class I
• 10 years 90% power output warranty

 

☆☆☆Stock On Sale 255w Poly Solar Panel 0.45/W!!!!☆☆☆ A Grade Good Quality

Shipping of 245w-320w Poly Solar Panel

By Sea

Delivery from Shanghai or Ningbo seaport

By Air

Departure from Shanghai Pudong Airport

By Express

Post by DHL, EMS, UPS, TNT.

 

Q: How does the angle and orientation of solar panels affect their performance?
The angle and orientation of solar panels greatly impact their performance. The angle determines how directly the panels receive sunlight, with the optimal tilt varying based on location and season. Panels angled towards the sun maximize energy production, while steep angles may result in reduced efficiency. The orientation, whether facing south or a specific azimuth, also affects the total energy generated. Correctly aligning panels ensures they capture the maximum amount of sunlight, optimizing their overall performance.
Q: How long does it take to recoup the cost of installing a solar energy system?
The length of time it takes to recoup the cost of installing a solar energy system can vary depending on various factors, including the initial cost of the system, the amount of electricity the system generates, and the cost of electricity from the grid. On average, it typically takes around 5 to 10 years to recoup the upfront investment of a solar energy system. However, this time frame can be shorter or longer depending on the specific circumstances. One of the key factors influencing the payback period is the cost of electricity from the grid. If electricity prices are high, the solar system can offset a larger portion of the electricity bill, leading to quicker payback. Additionally, the availability of government incentives and tax credits can significantly reduce the initial cost and shorten the payback period. The amount of electricity generated by the solar system also plays a crucial role. A larger system that generates more electricity will offset a greater portion of the electricity bill, accelerating the payback period. Another consideration is the location and local climate. Regions with ample sunlight and higher electricity costs tend to have shorter payback periods. Additionally, the presence of net metering programs, where excess energy generated by the system can be sold back to the grid, can further shorten the time it takes to recoup the investment. It's important to note that while the payback period is an important aspect of evaluating the financial feasibility of a solar energy system, it is just one factor to consider. Solar energy systems have long lifespans, typically around 25 to 30 years, during which they can continue to generate free and clean electricity, providing significant savings and environmental benefits beyond the payback period.
Q: Can solar energy systems be used in powering disaster relief centers or emergency shelters?
Yes, solar energy systems can definitely be used in powering disaster relief centers or emergency shelters. In fact, solar power is increasingly being utilized in such situations due to its numerous benefits. One of the key advantages of solar energy systems is their ability to function independently of the grid. During natural disasters or emergencies, the conventional power grid may be disrupted or completely unavailable. In such situations, solar panels can generate electricity from sunlight, providing a reliable and sustainable source of power for essential operations in relief centers or shelters. Solar energy systems are also highly portable and modular, making them ideal for temporary installations. They can be quickly deployed and set up in disaster-stricken areas, providing immediate power for lighting, communication devices, medical equipment, and other critical needs. Additionally, solar energy systems can be easily expanded or modified to meet the increasing energy demands of relief centers or shelters as the situation evolves. Furthermore, solar power systems have minimal environmental impact compared to traditional fuel-based generators. They produce clean energy without releasing harmful pollutants or greenhouse gases, which is particularly important in disaster-stricken areas where air quality may already be compromised. Lastly, solar energy systems offer long-term cost savings. Once installed, solar panels require minimal maintenance and have a lifespan of 25-30 years. This reduces the reliance on expensive and often scarce fuel supplies, allowing relief centers and emergency shelters to allocate their resources more efficiently. In conclusion, solar energy systems are a reliable, sustainable, and cost-effective solution for powering disaster relief centers or emergency shelters. Their ability to function independently, portability, minimal environmental impact, and long-term cost savings make them an excellent choice for powering critical operations during times of crisis.
Q: Can a solar energy system power an entire home or business?
Yes, a solar energy system can indeed power an entire home or business. With the right size and capacity of solar panels, combined with an efficient battery storage system, a solar energy system can generate and store enough electricity to meet the power demands of a residential or commercial property. Additionally, advancements in solar technology and energy management systems have made it easier to optimize solar energy usage and reduce reliance on the grid, making solar power a viable and sustainable solution for powering homes and businesses.
Q: What is the role of solar batteries in storing excess solar energy?
The role of solar batteries in storing excess solar energy is to capture and store the surplus energy produced by solar panels during periods of high production, such as sunny days. These batteries store the excess energy for later use, allowing households and businesses to have a reliable source of electricity during times when solar production is low or non-existent, such as at night or during cloudy days. By storing the excess energy, solar batteries help increase energy self-sufficiency, reduce reliance on the grid, and promote renewable energy utilization.
Q: How does solar energy impact job creation?
Solar energy has a significant impact on job creation as it requires a skilled workforce for manufacturing, installation, and maintenance of solar panels. This sector has experienced tremendous growth, resulting in the creation of numerous jobs and opportunities for both skilled and unskilled workers. Additionally, the development of solar energy stimulates economic growth by attracting investments and fostering innovation, leading to further job creation in related industries.
Q: Are there any fire safety concerns associated with solar energy systems?
Yes, there are fire safety concerns associated with solar energy systems. While solar panels themselves do not generally cause fires, issues can arise with the electrical components of the system, such as faulty wiring, improper installation, or inadequate maintenance. Additionally, firefighters may face challenges in fighting fires involving solar panels due to the risk of electrocution and the inability to easily disconnect the system from the electrical grid. Proper installation, regular inspections, and adherence to safety guidelines can help mitigate these concerns.
Q: Can solar energy systems be used in areas with high levels of dust or sandstorms?
Solar energy systems can indeed be utilized in regions with significant amounts of dust or sandstorms. Although these natural occurrences can momentarily decrease the efficiency of solar panels by obstructing sunlight, there are various steps that can be taken to mitigate their impact. Firstly, it is crucial to regularly clean and maintain solar panels to eliminate accumulated dust and debris, ensuring the maximum absorption of sunlight. This can be achieved through manual cleaning or by utilizing automated cleaning systems that employ water or brushes to keep the panels pristine. Secondly, there are advanced panel designs and coatings available that minimize the adherence of dust particles and facilitate effortless cleaning. These technologies enable panels to self-clean or reduce the accumulation of dust, guaranteeing optimal performance even in dusty environments. Additionally, proper installation and positioning of solar panels play a significant role in minimizing the impact of dust or sandstorms. By tilting the panels at an appropriate angle and maintaining sufficient ground clearance, the accumulation of dust can be minimized. Furthermore, employing protective measures such as fences, windbreakers, or enclosures around the solar energy systems can shield the panels from strong winds and blowing sand during sandstorms. These measures effectively prevent physical damage to the panels and maintain their functionality. In conclusion, although dust or sandstorms may present temporary obstacles to solar energy systems, with proper maintenance, cleaning, panel design, positioning, and protective measures, solar energy can still be effectively harnessed in areas with high levels of dust or sandstorms.
Q: How do solar energy systems affect the roof's lifespan?
Solar energy systems can actually extend the lifespan of a roof. By providing a protective layer, they shield the roof from weather elements, such as sun exposure, rain, and hail. Additionally, solar panels can help to regulate the temperature on the roof, reducing thermal stress and potentially preventing damage. Overall, solar energy systems can contribute to the longevity and durability of a roof.
Q: Can solar energy systems be used for heating and cooling a home?
Yes, solar energy systems can be used for heating and cooling a home. Solar thermal systems can be installed to heat water for space heating and domestic hot water. Additionally, solar-powered air conditioning systems, such as solar-powered heat pumps, can be used to cool a home efficiently.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords