2 Types of Solar Energy Systems - Portable Solar Lighting System Hot Selling SPS_50W
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 pc
- Supply Capability:
- 10000 pc/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Main Information
SPS_50W This product is high performance,family used portable solar power system,which can receive energy and store it in battery outside connected to SPK by solar energy on sunny day,and supplies electric power for varies appliances such as electric fan,lighting lamps, television, portable computer etc.It can supply power for both DC and AC electric application .It’s very helpful and useful for home electric supply.
Features
◆ Both Solar charge input and AC charge input.
◆ Both DC and AC output
◆ Solar Feedback Circuit Protection
◆ Output Short-circuit Protection
◆ Solar「+」「-」anti-access protection
◆ Output「+」「-」anti-access protection
◆ Over Charged Protection
◆ Over Discharged Protection
◆ Over Load Protection
◆ Over-Temperature Protection
Technical parameters
Specification | Value/Material | |
Item No. KDF | SPS_50W | |
Solar Recommended | Specification | Poly silicon |
Working Voltage/Power | 18V45~60WP | |
Battery | Rated Voltage/Capacity | 12V26AH |
Cycle Number | 80% Deep Cycle Number:500 70% Cycle Number:800 | |
Working Temperature | Short Period(one Month):-20~50℃ Long Period(Six Months):-10~45℃ | |
Charging Controller | Operating Voltage | 12V |
Input Voltage | 17.3V~21V | |
Input current | MAX:10A | |
Power Consumption | MAX: 5mA | |
Low Voltage Disconnect(LVD) | 10.8V | |
Low Voltage Reconnect(LVR) | 12.3V | |
High Voltage Discharge( HVC) | 14.6V | |
High Voltage Recharge(HVR) | 13.8V | |
Temperature Protection | 60℃ | |
DC Output | DC output & Application | USB 5V1A*2 |
DC output & Application | DC 12V1*4A | |
AC Output | Output Wave | Modified Wave |
Input Voltage | 11V~15V | |
Output Voltage | 110V±10% | |
Output Frequency | 60Hz±2Hz/50Hz±2Hz | |
Rated Output Power | 200W | |
Maximum VA | 400VA | |
Maximum Efficiency | 88% | |
Temperature | 0-40℃ | |
Over Temperature | 60℃~70℃ | |
Low Voltage Alarm | 11V | |
Low Voltage Shut off | 10.5V | |
High Voltage Shut off | 16V | |
Package | Set size | 328*252*267mm |
Set N·W | 11.6kg | |
Set N·W | 12.8kg |
- Q:Can solar energy systems be used for powering streetlights?
- Yes, solar energy systems can be used for powering streetlights.
- Q:Can solar energy systems be used in areas with limited sunlight?
- Yes, solar energy systems can still be used in areas with limited sunlight. While areas with abundant sunlight are ideal for solar energy generation, advancements in solar technology have made it possible to generate electricity even in areas with less sunlight. These systems can still produce a significant amount of energy by capturing and converting sunlight, albeit at a reduced efficiency. Additionally, energy storage solutions such as batteries can help store excess energy for use during periods of low sunlight.
- Q:Can solar energy systems be used in areas with limited space?
- Yes, solar energy systems can be used in areas with limited space. There are various compact and space-efficient solar panels available, such as rooftop solar panels, solar awnings, and solar tiles, which can be installed in small areas. Additionally, advancements in technology have led to the development of flexible and portable solar panels that can be used in areas where traditional panels may not be suitable.
- Q:What is the impact of roof angle on the performance of solar panels?
- The performance of solar panels is significantly impacted by the angle of the roof. The ideal angle of the roof depends on the location and time of year when the installation takes place. In order for solar panels to perform at their best, they should be tilted at an angle that allows them to capture the maximum amount of sunlight throughout the day. This is because the angle affects the amount of direct sunlight that falls on the panels, which directly influences their energy production. In areas closer to the equator, where the sun is directly overhead, it is generally recommended to have a roof angle of around 30 to 45 degrees. This allows the panels to receive the highest amount of sunlight throughout the year. On the other hand, in regions that are farther from the equator and have a lower position of the sun in the sky, a steeper roof angle of approximately 45 to 60 degrees may be more suitable to optimize the performance of solar panels. The impact of the roof angle on solar panel performance is also noticeable during different seasons. For instance, during the summer when the sun is higher in the sky, a flatter roof angle may be more effective in capturing sunlight. Conversely, during the winter when the sun is lower, a steeper roof angle can help maximize the production of energy. It is important to keep in mind that while the roof angle is a crucial factor, there are other factors that can also affect the performance of solar panels. These include the orientation of the panels (preferably facing south in the Northern Hemisphere) and the presence of shading from nearby objects or trees. Proper planning and design are essential to ensure the solar panel system operates optimally and efficiently.
- Q:What is the difference between a solar lease and a solar purchase?
- A solar lease involves renting the solar panels from a third-party provider, typically with no upfront costs but with monthly lease payments. On the other hand, a solar purchase involves buying the solar panels outright, either through a loan or with cash, and owning the system. With a purchase, there may be upfront costs, but the homeowner receives financial benefits such as tax credits and energy savings.
- Q:Can solar energy systems be used in conjunction with energy storage systems?
- Yes, solar energy systems can be effectively used in conjunction with energy storage systems. Solar energy systems generate electricity during daylight hours, and any excess energy generated can be stored in energy storage systems such as batteries. These batteries can then be used to power homes or businesses during periods when solar energy generation is limited, such as at night or during cloudy weather. This combination of solar energy systems and energy storage systems allows for a more consistent and reliable supply of electricity, reducing dependence on the grid and promoting greater sustainability.
- Q:Can solar energy systems be installed on rooftops?
- Yes, solar energy systems can be installed on rooftops. In fact, rooftops are one of the most common and convenient locations for installing solar panels as they receive direct sunlight and offer ample space for the panels. This placement maximizes the system's efficiency and allows homeowners and businesses to generate their own clean, renewable energy.
- Q:Can solar energy systems be used in areas with high levels of wildlife activity?
- Yes, solar energy systems can be used in areas with high levels of wildlife activity. However, proper measures should be taken to minimize any potential negative impacts on wildlife. This can include designing and installing systems that are bird-friendly, using wildlife-friendly fencing, and ensuring that the installation site does not disrupt important wildlife habitats or migration routes. Additionally, regular monitoring and maintenance can help identify and address any issues that may arise to ensure the coexistence of solar energy systems and wildlife.
- Q:How do solar energy systems impact the stability of the electrical grid?
- Solar energy systems can have both positive and negative impacts on the stability of the electrical grid. On one hand, solar energy systems help diversify the energy mix by providing a clean and renewable source of electricity. This reduces the reliance on fossil fuels and decreases greenhouse gas emissions, leading to a more sustainable and environmentally friendly grid. Additionally, solar energy systems can contribute to grid stability by reducing the peak demand for electricity during daylight hours. During sunny periods, solar panels produce electricity at their maximum capacity, which can offset the need for fossil fuel-based power plants to operate at their peak levels. This can help alleviate strain on the grid during times of high demand and prevent potential power outages or blackouts. However, solar energy systems also pose challenges to the stability of the electrical grid. One of the main challenges is intermittency. Solar power generation is dependent on weather conditions, so it fluctuates throughout the day. This intermittency can create imbalances between electricity supply and demand, which can destabilize the grid. To mitigate this issue, grid operators must carefully manage the integration of solar energy systems into the grid by employing advanced forecasting and grid management technologies. Furthermore, the high penetration of solar energy systems in certain regions can lead to over-generation during peak solar production hours. This excess electricity may not be efficiently utilized or stored, potentially causing voltage fluctuations and grid instability. Grid operators need to invest in energy storage technologies such as batteries to store surplus solar power and release it when needed, ensuring grid stability. In conclusion, solar energy systems have a significant impact on the stability of the electrical grid. While they contribute to a cleaner and more sustainable energy mix, their intermittent nature and potential for over-generation require careful grid management and the integration of energy storage technologies. With proper planning and investment, solar energy systems can play a crucial role in achieving a stable and resilient electrical grid.
- Q:Can solar energy systems be used in residential apartments or multi-story buildings?
- Yes, solar energy systems can certainly be used in residential apartments or multi-story buildings. In fact, they are increasingly being integrated into such settings as a viable and sustainable energy solution. Solar panels can be installed on the rooftops of these buildings to harness the sun's energy and convert it into electricity. This electricity can then be used to power various appliances, lighting, and other electrical devices within the apartments or building. Additionally, solar energy systems can also be designed to store excess energy for later use or even feed it back into the grid, allowing residents to benefit from net metering. While the feasibility of installing solar panels in these settings may vary depending on factors like available roof space and building orientation, advances in technology have made it easier and more affordable to implement solar energy systems in residential apartments and multi-story buildings.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
2 Types of Solar Energy Systems - Portable Solar Lighting System Hot Selling SPS_50W
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 pc
- Supply Capability:
- 10000 pc/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords