• Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality System 1
  • Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality System 2
  • Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality System 3
  • Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality System 4
  • Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality System 5
Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality

Solar Energy Systems Brevard - 40w Small Solar Panels with Good Quality

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1 watt
Supply Capability:
10000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Application:
Home
Output Voltage (V):
24

Hot Sale !!! Quality and Safety of Small Poly Solar Panel 25~85w

1. Rigorous quality control meets the highest international standards.

2. High-transmissivity low-iron tempered glass, strong aluminium frame.

3. Using UV-resistant silicon.

4. IS09001/14001/CE/TUV/UL  

 

 

Warranties of Small Poly Solar Panel 25~85w

1. 10 years limited product warranty

2. 15 years at 90% of the minimal rated power output

3. 25 years at 80% of the minimal rated power output

 

Specification

Characteristics of Poly solar panels CNBM (25-85W)

Max Power Voltage Vmp(V) 

30.3

30.8

31.1

31.4

31.85

Max Power Current Imp(A)

7.60

7.64

7.73

7.81

7.85

Open Circuit Voltage Voc(V)

36.1

36.6

37

37.3

37.68

Short Circuit Current Isc(A)

8.50

8.55

8.65

8.75

8.85

Max Power Pm(W)

230W

235W

240W

245W

250W

 

Temperature Coefficient of Cells Poly solar panels CNBM (25-85W)

NOCT 

45± 2

Temperature Coeffucients of Isc 

 0.0492

Temperature Coeffucients of Voc 

-0.3374

Temperature Coeffucients of Voc 

-0.4677

 

Mechanical Data of Poly solar panels CNBM (25-85W)

Dimension 

1638 ×  982 × 40 mm

Weight

19.5 kg

No. of Cells and Connections

60 (6 ×10)

Tolerance

0 ~ + 5 W

Cell

Monocrystalline Cell 156 × 156 mm

Packing

624 Pcs/40ft(H) Container

 

Limits of Poly solar panels CNBM (25-85W)

Operating Temperature

-40 to +85

Storage Temperature

-40 to +85

Max System Voltage 

1000VDC(IEC) / 600VDC(UL)

 

Features of our products:
• High conversion efficiency mono/poly-crystalline amorphous silicon solar cells
• Modules incorporate high performance bypass diodes to minimize the power drop caused by shading
• High transmittance, low-iron tempered glass
• High performance EVA encapsulant to prevent destroying and water.
• AI frame: without screw, corner connection. 8 holes on the frame can be installed easily
• Good performance of preventing from atrocious weather such as wind and hails
• Certifications: CE IEC TUV VDE UL, Class I
• 10 years 90% power output warranty

 

40w Small Solar Panels with Good Quality

Shipping of Small Poly Solar Panel 25~85w

By Sea

Delivery from Shanghai or Ningbo seaport

By Air

Departure from Shanghai Pudong Airport

By Express

Post by DHL, EMS, UPS, TNT.

 

Q:Are there any risks of electrical malfunctions or failures during extreme weather events with solar energy systems?
Solar energy systems may encounter risks of electrical malfunctions or failures during extreme weather events. While solar panels are designed to withstand various weather conditions, such as rain, snow, and wind, they remain susceptible to damage in severe weather events like hurricanes, tornadoes, or severe storms. In extreme weather, high winds have the potential to physically harm solar panels by dislodging them from their mounts or causing them to break. Heavy snowfall can also cover the panels, reducing their efficiency and potentially causing them to collapse due to the weight. Additionally, lightning strikes during thunderstorms can jeopardize the electrical components of the solar energy system, leading to potential malfunctions or failures. Nevertheless, it is important to note that solar energy systems are typically equipped with safety measures to minimize these risks. Many solar panels undergo testing and certification to ensure they can withstand specific wind speeds and snow loads. Sturdy and secure mounting systems are utilized, and electrical components often have surge protection to safeguard against lightning strikes. Furthermore, solar energy systems are interconnected with the power grid, enabling a seamless transition to grid power during extreme weather events if needed. This helps mitigate the impact of potential malfunctions or failures. To mitigate the risks associated with extreme weather events, regular maintenance and inspection of solar energy systems are crucial. Periodic check-ups and cleaning can ensure the panels are in good condition, and any signs of damage or wear can be promptly addressed. It is also advisable to seek guidance from a professional installer or technician who can offer advice on specific weather-related risks and potential solutions.
Q:What is solar energy?
Solar energy is the radiant light and heat that comes from the sun, which is harnessed and converted into usable forms of power like electricity or heat.
Q:Can solar energy systems be used off-grid?
Yes, solar energy systems can be used off-grid. Off-grid solar systems are designed to generate and store electricity independently without being connected to the traditional power grid. These systems typically consist of solar panels, batteries for energy storage, and inverters to convert the stored energy into usable electricity. Off-grid solar energy systems are particularly useful in remote areas where access to the grid is limited or unavailable, providing a sustainable and reliable source of power.
Q:How much maintenance is required for a solar energy system?
Solar energy systems typically require minimal maintenance. Regular cleaning of the solar panels to remove dust and debris is recommended to ensure optimal performance. Additionally, checking the system's components, such as inverters and wiring, at least once a year is advisable. Overall, solar energy systems are designed to be durable and reliable, requiring little ongoing maintenance.
Q:How often do solar panels need to be cleaned?
Solar panels generally need to be cleaned at least once or twice a year to ensure optimal performance. However, the frequency of cleaning can vary depending on factors such as the local climate, amount of dust or debris accumulation, and the tilt angle of the panels. Regular inspections and maintenance can help determine the specific cleaning needs of solar panels.
Q:Can a solar energy system be used in conjunction with other renewable energy sources?
Certainly, a solar energy system can be utilized alongside other renewable energy sources. In fact, the amalgamation of various renewable energy sources is often referred to as a hybrid renewable energy system, which can yield numerous benefits. By integrating solar energy with sources like wind, hydro, or geothermal energy, a hybrid system can provide a more consistent and dependable power supply. This is due to the different energy generation patterns of each source, and combining them can compensate for any fluctuations or limitations in a specific source. For instance, solar energy production peaks during the day, while wind energy remains relatively constant throughout the day and night. The integration of these two sources ensures a continuous power supply. Moreover, the utilization of multiple renewable energy sources can maximize overall energy production and efficiency. Each source possesses its own strengths and weaknesses, and combining them can amplify the total energy output. This is particularly advantageous in scenarios with high energy demand or when one source alone may not suffice to meet energy needs. Furthermore, a hybrid renewable energy system can enhance energy independence and resilience. By diversifying the energy sources, the system becomes less reliant on a single source, reducing vulnerability to disruptions or failures. This is especially crucial in remote or off-grid areas where access to a reliable power supply is essential. In conclusion, a solar energy system can effectively be used together with other renewable energy sources to create a hybrid system. This approach offers various advantages, including enhanced reliability, improved efficiency, and increased energy independence. By combining multiple renewable energy sources, we can capitalize on their unique strengths and establish a more sustainable and resilient energy system.
Q:Can solar energy systems be used in areas with limited access to solar energy financing options?
Yes, solar energy systems can be used in areas with limited access to solar energy financing options. In such cases, alternative financing models like community solar or power purchase agreements (PPAs) can be utilized. Additionally, organizations and governments can offer subsidies or incentives to make solar energy systems more affordable and accessible in these areas.
Q:Can solar energy systems be used in powering concert halls or auditoriums?
Certainly, concert halls and auditoriums can make use of solar energy systems to generate power. The popularity of utilizing solar energy in large venues like these has been increasing due to its various advantages. The installation of solar panels on the roof or surrounding areas of the venue allows for the capture of sunlight and its conversion into electricity. This renewable energy source can then be used to power all the electrical equipment and lighting systems within the concert hall or auditorium. One of the main benefits of incorporating solar energy systems in these venues is the potential for cost savings. Concert halls and auditoriums typically consume substantial amounts of electricity, especially during events and performances. By harnessing solar power, these venues can significantly reduce their dependence on the traditional power grid and consequently lower their energy bills. Furthermore, solar energy systems require minimal maintenance once they are installed, which further contributes to their long-term cost-effectiveness. Furthermore, the integration of solar energy into concert halls and auditoriums aligns with the global emphasis on sustainability and the reduction of carbon footprints. By utilizing renewable energy sources such as solar power, these venues can considerably decrease their greenhouse gas emissions and promote a more environmentally friendly approach to energy consumption. This not only benefits the venue itself but also contributes to the overall sustainability goals of the local community and society as a whole. However, it is important to take into account that the size and power requirements of concert halls and auditoriums may necessitate a significant investment in solar panels and related equipment. Factors such as the venue's energy demand, available installation space, and the local climate all need to be assessed during the planning stage. Ensuring that the solar energy system is appropriately sized to meet the energy needs of the venue and designed to withstand the specific weather conditions of the location is crucial. In conclusion, it is indeed possible to use solar energy systems to power concert halls or auditoriums. The advantages of employing solar power in these venues encompass cost savings, environmental sustainability, and a reduction in reliance on the traditional power grid. With careful planning and installation, solar energy can provide a reliable and efficient source of electricity to meet the energy demands of such large-scale venues.
Q:What is the difference between a solar thermal system and a photovoltaic system?
A solar thermal system and a photovoltaic system are both forms of solar energy systems, but they function differently and have distinct purposes. A solar thermal system is primarily used for heating purposes. It harnesses the sun's energy to heat water or air directly. This is achieved by using solar collectors, which absorb sunlight and convert it into heat. The heated water or air is then used for various applications like space heating, water heating, or even for powering turbines to generate electricity. Solar thermal systems are commonly used in residential, commercial, and industrial settings to provide hot water or heating solutions. On the other hand, a photovoltaic system, commonly known as solar panels, is designed to generate electricity from sunlight. It utilizes photovoltaic cells, typically made of silicon, to directly convert sunlight into electricity through the photovoltaic effect. These cells are interconnected in solar panels, and multiple panels can be combined to form an entire photovoltaic system. The electricity generated by a photovoltaic system can be used to power various electrical devices, appliances, or even feed into the grid to offset energy consumption. In summary, the main difference between a solar thermal system and a photovoltaic system lies in their respective purposes. Solar thermal systems primarily focus on heating applications, utilizing the sun's energy to heat water or air directly. On the other hand, photovoltaic systems are designed to produce electricity by converting sunlight into electrical energy using solar panels.
Q:What is the role of solar-powered water heaters in solar energy systems?
The role of solar-powered water heaters in solar energy systems is to utilize the sun's energy to heat water for various purposes, such as domestic use or in industrial settings. By harnessing the heat from the sun, solar water heaters reduce the dependence on traditional energy sources and contribute to the overall energy efficiency of solar energy systems.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords