Sirius Solar Energy Systems 105w Small Solar Panels in Stock China Manufacturer
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1 watt
- Supply Capability:
- 10000000 watt/month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product Description:
Hot Sale !!! Quality and Safety of Small Poly Solar Panel 5w~150w
1. Rigorous quality control meets the highest international standards.
2. High-transmissivity low-iron tempered glass, strong aluminium frame.
3. Using UV-resistant silicon.
4. IS09001/14001/CE/TUV/UL
Warranties of Small Poly Solar Panel 35~85w
1. 10 years limited product warranty
2. 15 years at 90% of the minimal rated power output
3. 25 years at 80% of the minimal rated power output
Specification
Characteristics of Poly solar panels CNBM (245-320W) | |||||
Max Power Voltage Vmp(V) | 30.3 | 30.8 | 31.1 | 31.4 | 31.85 |
Max Power Current Imp(A) | 7.60 | 7.64 | 7.73 | 7.81 | 7.85 |
Open Circuit Voltage Voc(V) | 36.1 | 36.6 | 37 | 37.3 | 37.68 |
Short Circuit Current Isc(A) | 8.50 | 8.55 | 8.65 | 8.75 | 8.85 |
Max Power Pm(W) | 230W | 235W | 240W | 245W | 250W |
Temperature Coefficient of Cells Poly solar panels CNBM (245-320W) | |
NOCT | 45± 2 |
Temperature Coeffucients of Isc | 0.0492 |
Temperature Coeffucients of Voc | -0.3374 |
Temperature Coeffucients of Voc | -0.4677 |
Mechanical Data of Poly solar panels CNBM (245-320W) | |
Dimension | 1638 × 982 × 40 mm |
Weight | 19.5 kg |
No. of Cells and Connections | 60 (6 ×10) |
Tolerance | 0 ~ + 5 W |
Cell | Monocrystalline Cell 156 × 156 mm |
Packing | 624 Pcs/40ft(H) Container |
Limits of Poly solar panels CNBM (245-320W) | |
Operating Temperature | -40 to +85 |
Storage Temperature | -40 to +85 |
Max System Voltage | 1000VDC(IEC) / 600VDC(UL) |
Features of our products:
• High conversion efficiency mono/poly-crystalline amorphous silicon solar cells
• Modules incorporate high performance bypass diodes to minimize the power drop caused by shading
• High transmittance, low-iron tempered glass
• High performance EVA encapsulant to prevent destroying and water.
• AI frame: without screw, corner connection. 8 holes on the frame can be installed easily
• Good performance of preventing from atrocious weather such as wind and hails
• Certifications: CE IEC TUV VDE UL, Class I
• 10 years 90% power output warranty
Shipping of Small Poly Solar Panel 35~85w
By Sea | Delivery from Shanghai or Ningbo seaport |
By Air | Departure from Shanghai Pudong Airport |
By Express | Post by DHL, EMS, UPS, TNT. |
Features of our products:
• High conversion efficiency mono/poly-crystalline amorphous silicon solar cells
• Modules incorporate high performance bypass diodes to minimize the power drop caused by shading
• High transmittance, low-iron tempered glass
• High performance EVA encapsulant to prevent destroying and water.
• AI frame: without screw, corner connection. 8 holes on the frame can be installed easily
• Good performance of preventing from atrocious weather such as wind and hails
• Certifications: CE IEC TUV VDE UL, Class I
• 10 years 90% power output warranty
As a professional Solar Panel manufacturer and Supplier in China, we have our customers come around the whole world and our specialization has got a worldwide recognition. Meanwhile, with our superior quality, competitive price, prompt and excellent service, As main role in trade section of CNBM Group, CNBM International Corporation supplies products including Monocrystalline Solar Panel, Polycrystalline Solar Panel ( multicrystalline silicon Solar Panel) have received and enjoyed famous reputation in many countries and regions in the world.
- Q: How do solar energy systems contribute to reducing carbon emissions?
- Solar energy systems contribute to reducing carbon emissions by harnessing the power of the sun and converting it into electricity without producing any greenhouse gases. This clean and renewable source of energy replaces the need for fossil fuel-based power plants, which emit large amounts of carbon dioxide and other pollutants into the atmosphere. By adopting solar energy systems, we can significantly decrease our reliance on fossil fuels and mitigate the harmful effects of climate change.
- Q: Can solar energy systems be used for powering greenhouses?
- Yes, solar energy systems can be used for powering greenhouses. Solar panels can generate electricity that can be used to power lighting, ventilation, heating, and cooling systems in greenhouses. This allows for a sustainable and renewable source of energy, reducing reliance on fossil fuels and minimizing greenhouse gas emissions. Additionally, solar energy systems can be integrated with energy storage solutions to ensure continuous power supply even during periods of low sunlight.
- Q: Can solar energy systems be used in areas with limited access to solar energy warranties and guarantees?
- Yes, solar energy systems can still be used in areas with limited access to solar energy warranties and guarantees. While warranties and guarantees provide added assurance and protection, the viability of solar energy systems in such areas depends on factors like local climate conditions, available sunlight, and the efficiency of the system. Proper design, installation, and maintenance can help optimize energy production, making solar energy systems feasible even without extensive warranty coverage. Additionally, alternative financing options and community initiatives can help mitigate potential risks and barriers in areas with limited access to solar energy warranties and guarantees.
- Q: Can solar energy systems be used in powering desalination plants?
- Yes, solar energy systems can be used to power desalination plants. Solar-powered desalination systems use solar panels to convert sunlight into electricity, which is then used to power the desalination process. This sustainable approach not only reduces reliance on fossil fuels but also helps address the water scarcity issue by producing freshwater from seawater in an environmentally friendly manner.
- Q: How long does it take to recoup the investment in a solar energy system?
- The time it takes to recoup the investment in a solar energy system can vary depending on factors such as the cost of the system, the amount of energy it generates, the local electricity rates, available incentives, and the individual's energy consumption. On average, it typically takes around 5 to 10 years to recoup the initial investment in a residential solar energy system. However, with decreasing equipment costs and increasing government incentives, this payback period is continually reducing, making solar energy a more financially viable option for many individuals and businesses.
- Q: Can solar energy be used for hot water?
- Yes, solar energy can be used for hot water. Solar water heating systems utilize the sun's energy to heat water through solar thermal collectors, reducing the reliance on traditional energy sources and lowering energy costs.
- Q: Can solar energy systems be used for powering telecommunications networks?
- Yes, solar energy systems can indeed be used for powering telecommunications networks. Solar power is a sustainable and renewable energy source that can be harnessed to generate electricity for various applications, including powering telecommunication infrastructure. Solar energy systems consist of solar panels that convert sunlight into electricity through the photovoltaic (PV) effect. These PV panels are typically installed on rooftops, ground-mounted arrays, or even integrated into the structure of telecommunication towers. They absorb sunlight during the day and convert it into direct current (DC) electricity. To utilize this electricity for powering telecommunications networks, an inverter is used to convert the DC electricity into alternating current (AC), which is the standard form of electricity used in most electronic devices. The AC electricity generated by solar panels can then be used to power telecommunication equipment such as base stations, antennas, transmitters, and receivers. The benefits of using solar energy systems for powering telecommunications networks are numerous. Firstly, solar energy is abundant and available in almost all geographical locations, making it a viable option for powering remote or off-grid telecommunication sites. This reduces the reliance on traditional grid electricity, which may not be available or reliable in certain areas. Secondly, solar power is environmentally friendly, emitting zero greenhouse gases during operation. By using solar energy, telecommunication networks can significantly reduce their carbon footprint and contribute to the global transition towards clean energy sources. Moreover, solar energy systems are low maintenance and have a long lifespan, providing a reliable and cost-effective solution for powering telecommunication infrastructure. Once installed, solar panels require minimal maintenance and can last for 25-30 years or even longer with proper care. In conclusion, solar energy systems can be effectively used for powering telecommunications networks. They offer a sustainable and reliable source of electricity, reduce environmental impact, and provide a cost-effective solution for remote or off-grid telecommunication sites. With the increasing focus on renewable energy, solar power is becoming an increasingly popular choice for powering various sectors, including telecommunications.
- Q: Can solar energy systems be used in areas with high levels of vandalism or theft?
- Solar energy systems can certainly be used in areas with high levels of vandalism or theft. However, precautionary measures such as installing security cameras, using tamper-proof mounting systems, and implementing proper fencing can help deter potential thieves or vandals. Additionally, community engagement and education about the benefits of solar energy may also help in reducing such incidents.
- Q: Can a solar energy system be used in areas with limited sunlight?
- Indeed, the utilization of a solar energy system remains feasible in regions with limited sunlight. Although solar panels are most effective when directly exposed to sunlight, they are still capable of generating power in areas with limited sunlight. Even on cloudy days or during periods of low sunlight, solar panels can still produce electricity, albeit with reduced efficiency. Furthermore, the advancement of solar panel technology enables panels to capture and convert even diffuse sunlight, enabling their functionality in areas with limited direct sunlight. Additionally, solar energy systems can be tailored to incorporate energy storage solutions such as batteries. This enables the storage of excess energy generated during peak sunlight hours for later use during periods of limited sunlight. Consequently, solar energy remains a viable and sustainable solution for various regions worldwide, even those with limited sunlight.
- Q: Can solar energy systems be used for powering disaster relief operations?
- Solar energy systems have demonstrated their worth in disaster relief efforts, serving as a highly valuable means of supplying electricity to affected areas. The deployment of solar panels and solar-powered generators to regions struck by natural calamities enables the provision of a dependable and sustainable source of power. A key advantage of solar energy systems lies in their ability to operate autonomously, independent of the power grid. This proves especially beneficial in disaster situations where the power infrastructure may be damaged or utterly destroyed. Solar panels are capable of generating electricity even in remote locations, thereby allowing relief workers to access power for vital operations, such as communication, medical services, lighting, and water purification. Furthermore, solar energy systems offer cost-effectiveness and environmental friendliness. Once installed, solar panels require minimal maintenance, with sunlight serving as an abundant and free energy source. Consequently, there is no need for costly fuel deliveries or the utilization of expensive diesel generators, which can pose logistical challenges and financial burdens in areas ravaged by disasters. Additionally, solar power produces no harmful emissions, thereby reducing the impact on the environment and enhancing air quality in already vulnerable regions. Moreover, solar energy systems can be easily scaled up to meet the escalating power requirements of disaster relief missions. Temporary solar arrays can be rapidly established, and if necessary, additional panels can be incorporated into the system to generate more electricity. This flexibility empowers relief organizations to adapt and respond to the changing needs of the affected population. Nevertheless, it is crucial to acknowledge that solar energy systems may have certain limitations. Their effectiveness is contingent upon the availability of sunlight, which can be influenced by weather conditions or geographical factors. In regions with limited sunlight or during periods of cloud cover, the system's output may be diminished. To surmount this challenge, energy storage solutions, such as batteries, can be integrated into the system to store surplus energy for use during periods of low sunlight. In conclusion, solar energy systems have consistently demonstrated their reliability, cost-effectiveness, and sustainability in powering disaster relief operations. They offer electricity independently of the grid, mitigate environmental impact, and can be readily expanded. By harnessing solar power, relief organizations can efficiently deliver essential services to those in need, thereby facilitating a swift recovery process in disaster-stricken areas.
Send your message to us
Sirius Solar Energy Systems 105w Small Solar Panels in Stock China Manufacturer
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 1 watt
- Supply Capability:
- 10000000 watt/month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords