PPGI Prepainted Galvanized Steel Roof Sheets in Coils
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
PPGI Prepainted Galvanized Steel Roof Sheets in Coils
Details of PPGI Prepainted Galvanized Steel Roof Sheets in Coils
Grade | DX51D, SGCC, CGCC |
Thickness | 0.15mm-1.5mm |
Width | 600mm-1500mm(914/1219/1250 are available) |
Standard | JIS G3312, ASTM,GB/T1275 |
Certificate | ISO9001.ISO14001.OHSAS18001 |
Length | As per requests |
Zinc Coating | 40g-275g/m2 |
Lacquer Coated | 20-25 microns/5-15 microns |
Coil ID | 508mm/610mm |
Coil Weight | normally 3-10mt or as your requirement |
Supply ability | 200,000Mt/year (MOQ:25Mt) |
Color | RAL No. |
Price terms | FOB,CFR,CIF |
Payment terms | L/C,T/T |
Deliver time | 30days after received deposit or L/C |
Packing | Standard exporting package |
steel strip Water proof paper, metal covers, | |
Application | Corrugated roofing,outside building, |
boating building,car producing | |
household appliance | |
Main market | Southeast Asia , the EU, Russia, Ukraine , Latin America and other countries and Regions |
Specification of PPGI Prepainted Galvanized Steel Roof Sheets in Coils
Thickness | Width | Length of plate | Inner diameter of coil |
0.18-1.2mm | 800/914/1000/1200/1219/1250mm | 1000-6000mm | 508mm/610mm |
Coated Mass: | |||
Available Coated Mass(g/m^2) | Base plate | Available Coated Mass(g/m^2) | |
60,80, 100, 120, 160, 180 | Galvanized Steel | 60,80, 100, 120, 160, 180 | |
50, 70, 150 | Galvalume Steel | 50, 70, 150 |
Painting | Item | Code | |
Polyester | PE | ||
High-durability polyester | HDP | ||
Silicon modified polyesters | SMP | ||
Polyvinylidene fluoride | PVDF | ||
Easy-Cleaning | — | ||
Painting Thickness | Top side: 20±5microns; | ||
Bottom side: 5~7microns. | |||
Color System | Produce according to RAL Color System or as per buyer’s color sample. | ||
Painting structure | Top surface | Bottom surface |
|
Primer coating | No coating | 1/0 | |
Primer coating | Primer coating | 1/1 | |
Primer coating + Finish coating | No coating | 2/0 | |
Primer coating + Finish coating | Primer coating or single back coating | 2/1 | |
Primer coating + Finish coatin | Primer coating + Finish back coating | 2/2 |
CNBM Introduction of PPGI Prepainted Galvanized Steel Roof Sheets in Coils
CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.
With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.
Packaging & Delivery of PPGI Prepainted Galvanized Steel Roof Sheets in Coils
Packaging Detail | Sea worthy packing /as per customer's packing instruction |
Delivery Detail | 15 ~ 40 days after receiving the deposit |
Products Show
FAQ:
Are you a trading company or manufacturer? | Manufacturer |
What’s the MOQ? | 3 metric ton |
What’s your delivery time? | 15-35 days after downpayment received |
Do you Accept OEM service? | Yes |
what’s your delivery terms? | FOB/CFR/CIF |
What's the Payment Terms? | 30% as deposit,70% before shipment by T/T |
Western Union acceptable for small amount. | |
L/C acceptable for large amount. | |
Scrow ,Paybal,Alipay are also ok | |
Why choose us? | Chose happens because of quality, then price, We can give you both. Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals. |
What's your available port of Shipment? | Main Port, China |
What’s your featured services? | Our service formula: good quality+ good price+ good service=customer's trust
|
Where are your Market? | Covering more than 160 countries in the world |
- Q: What are the main factors affecting the cost of special steel?
- The main factors affecting the cost of special steel include the cost of raw materials, such as iron ore and other alloying elements, as well as the cost of energy required for the manufacturing process. Other factors include the complexity of production methods, the level of demand and supply in the market, transportation costs, and any additional costs associated with quality control and compliance with industry standards.
- Q: Can special steel be used in the semiconductor industry?
- Yes, special steel can be used in the semiconductor industry. Special steel, such as stainless steel, is often used in the semiconductor industry due to its excellent corrosion resistance, high temperature resistance, and low contamination properties. It is commonly used in various components and equipment used for semiconductor fabrication and processing.
- Q: How does special steel contribute to the power generation aftermarket industry?
- Special steel plays a crucial role in the power generation aftermarket industry by providing enhanced strength, durability, and corrosion resistance to critical components such as turbine blades, generator rotors, and boiler tubes. These advanced steel alloys enable power plants to operate at higher temperatures and pressures, resulting in increased efficiency and power output. Additionally, special steel's ability to withstand extreme conditions helps to reduce maintenance and downtime, ensuring reliable and uninterrupted power generation.
- Q: Can special steel be used in the electronics manufacturing industry?
- Yes, special steel can be used in the electronics manufacturing industry. Special steel alloys, such as stainless steel or high-strength low-alloy (HSLA) steel, offer excellent properties like corrosion resistance, electrical conductivity, and magnetic shielding, making them suitable for various electronic components like connectors, sensors, circuit boards, and casings. These specialized steel materials ensure durability, protection, and reliable performance in demanding electronic applications.
- Q: What are the requirements for special steel used in military applications?
- In order to ensure optimal performance and durability in the field, special steel utilized in military applications must meet specific criteria. These criteria encompass: 1. Superior strength: Military applications often entail extreme conditions, including heavy loads, impacts, and shocks. To withstand these forces without deformation or failure, special steel employed in these applications must possess high strength. 2. Exceptional toughness: The steel should exhibit remarkable toughness to resist cracking or fracturing when subjected to high-stress situations. This is crucial for safeguarding the well-being of military personnel and equipment. 3. Resistance to corrosion: Military operations can occur in diverse environments, such as marine or coastal areas, where exposure to moisture, saltwater, and other corrosive elements is prevalent. To maintain its structural integrity over time, special steel employed in military applications must possess good corrosion resistance. 4. Heat resistance: Military equipment frequently encounters elevated temperatures due to friction, combustion, or exposure to explosives. The steel used must possess good heat resistance to prevent deformation or loss of strength under such conditions. 5. Wear resistance: Military equipment undergoes frequent use, abrasive contact, and potential impacts with foreign objects. Therefore, special steel employed in these applications must exhibit excellent wear resistance to minimize damage and extend the lifespan of the equipment. 6. Machinability: Special steel utilized in military applications should be easily machinable and processable into various shapes and sizes. This ensures that it can be tailored to specific requirements and seamlessly integrated into different military systems. 7. Cost-effectiveness: While meeting all the aforementioned requirements, special steel utilized in military applications should also be cost-effective. It must strike a balance between performance and cost to ensure efficient resource utilization. By fulfilling these requirements, special steel employed in military applications can deliver the necessary strength, durability, and reliability required for military operations, thereby ensuring the safety and effectiveness of military personnel and equipment.
- Q: What are the different methods for annealing special steel?
- There are several methods for annealing special steel, including full annealing, process annealing, stress relief annealing, and spheroidizing annealing. Full annealing involves heating the steel to a temperature above the critical range and then slowly cooling it to room temperature. Process annealing is used to improve machinability and involves heating the steel to a temperature below the critical range and then cooling it in still air. Stress relief annealing is carried out to reduce internal stresses in the steel by heating it to a temperature below the critical range and then cooling it slowly. Spheroidizing annealing is used to improve the steel's formability and involves heating it to a temperature below the critical range and then cooling it slowly. Each method has its own specific purpose and benefits for annealing special steel.
- Q: What are the specific requirements for special steel used in the chemical reactor industry?
- The specific requirements for special steel used in the chemical reactor industry can vary depending on the specific application and the type of chemicals being processed. However, there are some general requirements that are typically expected for this type of steel. Firstly, the steel used in chemical reactors must have excellent corrosion resistance. Chemical reactors often handle highly corrosive substances, such as acids, alkalis, and other reactive chemicals. Therefore, the steel must be resistant to the corrosive effects of these substances to ensure the integrity and durability of the reactor. Secondly, the steel should have high temperature resistance. Chemical reactions often require high temperatures to facilitate the desired chemical transformations. The steel used in these reactors must be able to withstand these elevated temperatures without losing its structural integrity or undergoing any significant deformation. Furthermore, the steel should have good mechanical properties, including high strength and toughness. The reactor may experience high pressure and mechanical stress during operation, so the steel must be able to withstand these conditions without failure. Additionally, the steel used in chemical reactors should have good weldability and formability. This allows for ease of fabrication and construction of the reactor, ensuring a reliable and efficient manufacturing process. Moreover, the steel should have low levels of impurities, such as sulfur and phosphorus. These impurities can adversely affect the performance of the steel in terms of corrosion resistance and mechanical properties. Therefore, the steel must meet strict quality standards to ensure it is suitable for use in the chemical reactor industry. In summary, the specific requirements for special steel used in the chemical reactor industry include excellent corrosion resistance, high temperature resistance, good mechanical properties, weldability, formability, and low levels of impurities. Meeting these requirements is crucial to ensure the safety, reliability, and efficiency of chemical reactors in various industrial processes.
- Q: What are the cutting tools used for machining special steel?
- The cutting tools commonly used for machining special steel include carbide inserts, high-speed steel (HSS) drills and end mills, ceramic inserts, and diamond-coated tools. These tools are designed to withstand the high temperatures and hardness of special steel, ensuring precise and efficient cutting.
- Q: What are the common techniques for testing the quality of special steel?
- There are several common techniques used to test the quality of special steel. These techniques help ensure that the steel meets the required specifications and standards for its intended use. Some of the most common techniques include: 1. Chemical Analysis: This technique involves analyzing the composition of the steel to determine the concentration of various elements present. Chemical analysis helps ensure that the steel contains the required elements in the desired quantities and identifies any impurities that may affect its quality. 2. Tensile Testing: Tensile testing is used to measure the strength and elasticity of steel. It involves subjecting a sample of the steel to a gradually increasing load until it breaks. This helps determine the maximum stress the steel can withstand before failure, providing insights into its mechanical properties. 3. Hardness Testing: Hardness testing is used to measure the resistance of steel to indentation or penetration. It helps assess the steel's strength and ability to resist wear and deformation. Common hardness testing methods include Brinell, Rockwell, and Vickers hardness tests. 4. Microstructure Examination: Microstructure examination involves analyzing the steel's internal structure under a microscope. This technique helps identify the presence of any defects, such as inclusions, voids, or improper grain structure. It also provides information about the steel's heat treatment and overall quality. 5. Non-Destructive Testing (NDT): NDT techniques are widely used to test the quality of special steel without causing damage to the material. These techniques include ultrasonic testing, magnetic particle testing, liquid penetrant testing, and radiographic testing. NDT helps detect surface or internal defects, cracks, and discontinuities that may affect the steel's integrity. 6. Impact Testing: Impact testing measures the ability of steel to absorb energy under high-stress conditions. It involves striking a notched sample with a pendulum and measuring the energy absorbed during fracture. Impact testing provides insights into the steel's toughness and resistance to sudden shocks or impacts. 7. Corrosion Testing: Corrosion testing is performed to evaluate the steel's resistance to corrosion in different environments. It helps determine the steel's susceptibility to rust, oxidation, or chemical attack, which is crucial for applications in corrosive environments. By employing these common techniques, manufacturers and quality control professionals can ensure that special steel meets the required standards and specifications, guaranteeing its reliability and performance in various industries and applications.
- Q: What are the main characteristics of pressure vessel steel forgings?
- Pressure vessel steel forgings have several main characteristics that make them suitable for use in pressure vessels. Firstly, pressure vessel steel forgings are known for their high strength and toughness. This is crucial as pressure vessels are typically subject to high levels of internal pressure, and the steel must be able to withstand this without deforming or rupturing. The forgings are carefully designed and manufactured to ensure they have the necessary strength and toughness to withstand these pressures. Secondly, pressure vessel steel forgings have excellent resistance to corrosion. As pressure vessels often contain fluids or gases that can be corrosive, it is important that the steel used in their construction is resistant to corrosion. This helps to ensure the longevity and reliability of the pressure vessel. The steel forgings are often made with specific alloying elements that enhance their corrosion resistance. Another important characteristic of pressure vessel steel forgings is their ability to maintain their mechanical properties at high temperatures. Pressure vessels may be subjected to elevated temperatures due to the nature of the process or fluid they are containing. The forgings are designed to retain their strength and toughness even under these high-temperature conditions, ensuring the safety and reliability of the pressure vessel. Furthermore, pressure vessel steel forgings are typically manufactured with strict quality control measures in place. This is necessary to ensure that the forgings meet the required standards and specifications for pressure vessel applications. The manufacturing process includes thorough inspections, testing, and documentation to ensure that the forgings meet the necessary quality and safety requirements. Overall, the main characteristics of pressure vessel steel forgings include high strength and toughness, excellent corrosion resistance, the ability to withstand high temperatures, and strict quality control measures. These characteristics make pressure vessel steel forgings ideal for use in pressure vessels, providing the necessary strength, reliability, and safety required in such applications.
Send your message to us
PPGI Prepainted Galvanized Steel Roof Sheets in Coils
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords