• Calcined Anthracite High Heat Productivity System 1
  • Calcined Anthracite High Heat Productivity System 2
  • Calcined Anthracite High Heat Productivity System 3
Calcined Anthracite High Heat Productivity

Calcined Anthracite High Heat Productivity

Ref Price:
$200.00 - 300.00 / m.t. get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

  • Place of Origin: Ningxia, China (Mainland)

  • Application: steel making

  • Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

 

Packaging & Delivery

Packaging Details: In 1MT plastic woven bag.
Delivery Detail:30-40 DAYS

 

Specifications of Calcined Anthracite High Heat Productivity

Carbon Additve low Ash,S,P 
FC>95% ASH<4% S<0.3% 
It is made from TaiXi anthracite.
instead of pertrol coke reduce the cost 

 

Structure of Calcined Anthracite High Heat Productivity

      Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

 

Feature of Calcined Anthracite High Heat Productivity

Specifications (%):

Grade

 F.C

 Ash

 V.M

 Moisture

 S

Size

CR-95

≥95

<4

<1

<1

<0.3

0-30mm 
As buyer's request.

CR-94

≥94

<4

<1

<1

<0.3

CR-93

≥93

<6

<1

<1

<0.4

CR-92

≥92

<7

<1

<1

<0.4

CR-91

≥91

<8

<1

<1

<0.4

CR-90

≥90

<8.5

<1.5

<2

<0.4

 

 Image of Calcined Anthracite High Heat Productivity

 

FAQ of Calcined Anthracite High Heat Productivity

Why we adopt carbon additive?

Carbon Additives used as additive in steel making process. It made from well-selected Tai Xi anthracite which is low in content of ash, sulphur, phosphorus, high heat productivity, high chemically activation.

 

Mainly industry property of it is: instead of traditional pertroleum coal of Carbon Additives, reduce the cost of steelmaking.

Advantage:

Calcined Anthracite High Heat Productivity

1.High quality and competitive price.

2.Timely delivery.

3.If any item you like. Please contact us.

 

Your sincere inquiries are typically answered within 24 hours.

 

Q: How is carbon used in the production of lubricants?
Lubricants are produced using carbon in various ways. Base oil is one of the primary applications of carbon in lubricant production. Lubricants mainly consist of carbon-based molecules like mineral oils, synthetic oils, and vegetable oils. These oils are either obtained from crude oil or synthesized from other carbon-rich compounds. The base oil contains carbon atoms that form long chains or rings, offering exceptional lubricating properties. These carbon chains or rings possess high viscosity, reducing friction between moving parts. Consequently, this minimizes wear and tear, heat generation, and energy loss in different mechanical systems. Carbon is also utilized to create additives for lubricants. These additives are added to the base oil to improve its performance and provide additional advantages. For instance, graphite and molybdenum disulfide are carbon-based additives that deliver superior lubrication under extreme pressures and temperatures. They create a protective layer on the surface of moving parts, decreasing friction and preventing metal-to-metal contact. Moreover, carbon-based additives can enhance the oxidation resistance and anti-wear characteristics of lubricants. By introducing carbon molecules with specific functional groups, lubricants acquire the ability to form a protective film on metal surfaces. This film prevents corrosion and extends the lifespan of machinery. In conclusion, carbon plays a vital role in lubricant production. It acts as the base oil, providing viscosity and lubricating properties, and serves as an additive to optimize performance and safeguard machinery. Without carbon, the production of effective lubricants would be impossible.
Q: What are the potential uses of carbon nanomaterials in medicine?
Carbon nanomaterials have shown great promise in the field of medicine due to their unique properties. One potential use of carbon nanomaterials is in drug delivery systems. Their high surface area-to-volume ratio allows for efficient loading and release of therapeutic agents, enabling targeted and controlled drug delivery. This could lead to more effective treatments with reduced side effects. Another potential use is in medical imaging. Carbon nanomaterials, such as carbon nanotubes and graphene, have excellent optical and electrical properties that can enhance imaging techniques like MRI and CT scans. This could improve the accuracy and resolution of medical imaging, enabling better diagnosis and monitoring of diseases. Carbon nanomaterials also have antibacterial properties which can be utilized in wound healing and infection control. Nanostructured carbon materials can effectively kill bacteria and prevent the formation of biofilms, which are often resistant to conventional antibiotics. This could potentially revolutionize the treatment of infections, especially those caused by antibiotic-resistant bacteria. Furthermore, carbon nanomaterials have the potential to be used in tissue engineering and regenerative medicine. Their biocompatibility, mechanical strength, and electrical conductivity make them suitable for creating scaffolds to support tissue growth and promote regeneration. Carbon nanomaterials could also be used to enhance the electrical stimulation of tissues, aiding in nerve regeneration and improving the functionality of artificial organs. In addition to these applications, carbon nanomaterials have been explored for their ability to detect and monitor diseases at an early stage. Their unique electronic and optical properties can be utilized in biosensors and diagnostic devices, allowing for sensitive and specific detection of biomarkers associated with various diseases. While the potential uses of carbon nanomaterials in medicine are vast, it is important to note that further research and development are required to ensure their safety, efficacy, and long-term effects. Regulatory considerations and ethical concerns surrounding the use of nanomaterials in medicine also need to be addressed. Nonetheless, the promising capabilities of carbon nanomaterials offer hope for more advanced and personalized medical treatments in the future.
Q: What is methane?
Methane is a colorless and odorless gas that is the primary component of natural gas. It is formed from the decay of organic matter and is a potent greenhouse gas.
Q: What are the benefits of carbon-neutral technologies?
Carbon-neutral technologies play a crucial role in addressing climate change and creating a sustainable future due to their numerous benefits. Firstly, these technologies effectively reduce greenhouse gas emissions, especially carbon dioxide, which is the primary contributor to global warming. By transitioning to carbon-neutral technologies, we can significantly decrease our carbon footprint and mitigate the adverse effects of climate change. Secondly, carbon-neutral technologies promote energy efficiency and the conservation of resources. Many of these technologies, such as solar and wind power, utilize endless and easily accessible natural resources. This reduces our dependence on finite fossil fuels, thus safeguarding the environment and enhancing energy price stability. Moreover, embracing carbon-neutral technologies leads to improved air quality and public health. Conventional energy sources like coal and oil contribute to air pollution and have detrimental effects on human health, including respiratory and cardiovascular issues. By adopting cleaner technologies, we can reduce air pollution and enhance the well-being of individuals and communities. Additionally, carbon-neutral technologies can stimulate economic growth and create job opportunities. The development, installation, and maintenance of renewable energy infrastructure require skilled workers, leading to job creation and economic development. This transition also reduces reliance on imported energy sources, thereby enhancing energy independence and national security. Lastly, by embracing carbon-neutral technologies, we can demonstrate global leadership and contribute to international efforts in combating climate change. Countries that adopt these technologies serve as role models for others and encourage global cooperation in reducing greenhouse gas emissions. In conclusion, carbon-neutral technologies offer a wide range of benefits that are multidimensional. They not only help mitigate climate change and reduce greenhouse gas emissions but also promote energy efficiency, enhance air quality, stimulate economic growth, and contribute to global efforts in creating a sustainable future.
Q: How does carbon impact the stability of ecosystems?
Carbon is a crucial element that plays a significant role in the stability of ecosystems. It impacts ecosystems in various ways, both directly and indirectly. Firstly, carbon is an essential component of all living organisms. It is a key building block of organic molecules such as carbohydrates, proteins, and lipids, which are vital for the growth and development of plants and animals. Carbon is the primary source of energy for organisms through the process of photosynthesis, where plants convert carbon dioxide into glucose. This energy is then passed on through the food chain, sustaining the entire ecosystem. Therefore, the availability of carbon directly influences the productivity and stability of ecosystems. Furthermore, carbon dioxide (CO2) is a greenhouse gas that is naturally present in the Earth's atmosphere. It plays a crucial role in regulating the Earth's temperature by trapping heat and preventing it from escaping into space. However, human activities, particularly the burning of fossil fuels, have significantly increased the concentration of CO2 in the atmosphere, leading to a phenomenon known as global warming. This rapid increase in carbon emissions has resulted in climate change, which has severe consequences for ecosystems. Climate change impacts ecosystems in various ways. Rising temperatures affect the distribution and behavior of species, altering their habitats and migration patterns. As a result, some species may struggle to adapt, leading to imbalances in predator-prey relationships and disruptions in the overall biodiversity of ecosystems. Additionally, climate change can cause extreme weather events such as hurricanes, droughts, and floods, which can have devastating effects on ecosystems. These events can disrupt the availability of resources, destroy habitats, and even lead to the extinction of certain species. Furthermore, increased carbon dioxide levels in the atmosphere have also led to ocean acidification. When CO2 dissolves in seawater, it forms carbonic acid, which lowers the pH of the ocean. This acidification has adverse effects on marine organisms such as corals, shellfish, and other calcifying organisms that rely on calcium carbonate to build their shells or skeletons. The reduced availability of carbonate ions in the ocean makes it harder for these organisms to form and maintain their structures, ultimately impacting the stability of marine ecosystems. In conclusion, carbon has a significant impact on the stability of ecosystems. Its availability and concentration directly affect the productivity and energy flow within ecosystems. Moreover, human-induced carbon emissions have led to climate change and ocean acidification, which pose severe threats to the balance and functioning of ecosystems. Therefore, understanding and managing carbon levels in the environment is crucial for maintaining the stability and sustainability of ecosystems.
Q: How does carbon affect the ozone layer?
Carbon does not directly affect the ozone layer. However, certain carbon compounds, such as chlorofluorocarbons (CFCs), can release chlorine atoms when they reach the stratosphere. These chlorine atoms can then react with ozone molecules, leading to the depletion of the ozone layer.
Q: How is carbon used in the steel industry?
The steel industry heavily relies on carbon as it plays a crucial role in the production and enhancement of steel. Carbon is added to iron in the fundamental process that transforms it into steel, resulting in the desired properties of hardness, strength, and durability. In steelmaking, carbon is primarily used as an alloying element to improve the mechanical properties of steel. The carbon content in steel can vary depending on the desired grade and application, ranging from 0.1% to 2%. Low carbon steel, with a carbon content below 0.3%, is commonly used for applications that require good formability and weldability. On the other hand, high carbon steel, with a carbon content above 0.6%, is used for applications that demand high strength and hardness. Carbon also plays a crucial role in the heat treatment process of steel. Through carburizing, steel undergoes a heating process with carbon-rich gases or solids to increase the carbon content at the surface. This results in a hardened surface layer with improved wear resistance, while maintaining a tough and ductile core. Additionally, carbon is essential in the use of electric arc furnaces (EAFs) in steelmaking. EAFs utilize electricity to melt scrap steel and other raw materials. Carbon is introduced during this process to reduce the oxides present in the raw materials, allowing for efficient steel production. In conclusion, carbon is widely utilized in the steel industry to achieve the desired properties of steel, enhance its mechanical properties through heat treatment, and enable efficient steel production. This versatile element enables steel to be used in a wide range of applications across various industries.
Q: What are the effects of carbon emissions on the stability of peatlands?
Carbon emissions have significant effects on the stability of peatlands, leading to various environmental and ecological consequences. Peatlands are wetland ecosystems composed of partially decomposed organic matter, primarily consisting of dead plants and mosses. These ecosystems are known as important carbon sinks, storing large amounts of carbon in the form of plant material and organic peat. When carbon emissions, particularly from the burning of fossil fuels, are released into the atmosphere, it contributes to the overall increase in greenhouse gases, such as carbon dioxide (CO2) and methane (CH4). This increase in greenhouse gases leads to global warming and climate change, which have direct impacts on peatlands. One of the primary effects of carbon emissions on peatlands is the acceleration of peat decomposition. As temperatures rise due to global warming, the rate of microbial activity in peatlands increases, resulting in faster decomposition of organic matter. This process releases carbon dioxide and methane, further contributing to greenhouse gas emissions. The increased decomposition can also lead to the subsidence or sinking of peatlands, which affects their stability and can contribute to land degradation. Additionally, carbon emissions can alter the hydrology of peatlands. Rising temperatures can cause increased evaporation and reduced precipitation, leading to drier conditions in peatlands. This can result in water tables dropping below the surface, which inhibits the growth of mosses and the accumulation of new peat. As a result, peatlands become less capable of sequestering carbon and can even transition into carbon sources rather than sinks. The destabilization of peatlands due to carbon emissions has cascading effects on the overall ecosystem. Peatlands provide habitats for numerous plant and animal species, many of which are unique and highly adapted to these specific environments. The drying and sinking of peatlands can disrupt these ecosystems, leading to changes in the composition and distribution of species, as well as increased susceptibility to invasive species. Furthermore, the release of carbon dioxide and methane from peatlands contributes to the amplification of climate change. These greenhouse gases trap heat in the atmosphere, leading to further warming and exacerbating the cycle of peat decomposition and carbon emissions. In conclusion, carbon emissions have detrimental effects on the stability of peatlands, including accelerated peat decomposition, altered hydrology, and disruption of ecosystems. These impacts not only hinder peatlands' ability to sequester carbon but also contribute to climate change, creating a negative feedback loop. It is crucial to reduce carbon emissions and prioritize the preservation and restoration of peatlands to mitigate these effects and protect these valuable ecosystems.
Q: What is carbon monoxide poisoning?
High levels of carbon monoxide gas can be extremely dangerous, potentially causing fatal carbon monoxide poisoning. This condition occurs when an individual breathes in or comes into contact with this gas. Carbon monoxide, which is produced from burning carbon-based fuels like gasoline, natural gas, coal, and wood, is invisible, odorless, and tasteless. When carbon monoxide is inhaled, it enters the bloodstream and attaches itself to hemoglobin, the molecule responsible for carrying oxygen throughout the body. This attachment prevents oxygen from reaching vital organs and tissues, leading to oxygen deprivation or hypoxia. The symptoms of carbon monoxide poisoning can vary, depending on the duration and level of exposure. However, they often resemble flu-like symptoms, including headaches, dizziness, weakness, nausea, vomiting, confusion, and loss of consciousness. Prolonged exposure to high levels of carbon monoxide can cause severe brain damage, organ failure, and even death. If you suspect carbon monoxide poisoning, it is crucial to act swiftly. Get away from the source of exposure, seek fresh air, and contact emergency services for medical assistance. Moreover, it is essential to identify and resolve the source of carbon monoxide, such as faulty heating systems, blocked chimneys, or malfunctioning appliances, to prevent further exposure and ensure a safe environment. To avoid carbon monoxide poisoning, prevention is key. Regularly maintain and inspect fuel-burning appliances, install carbon monoxide detectors in homes and buildings, and ensure adequate ventilation to minimize the risk of exposure. Educating yourself and others about the dangers of carbon monoxide and the necessary precautions can save lives and protect individuals from this silent killer.
Q: What is carbon neutral tourism?
Carbon neutral tourism refers to a form of tourism that aims to minimize or eliminate the carbon footprint generated by travel and related activities. It is an approach that seeks to balance the amount of carbon dioxide released into the atmosphere with an equivalent amount of carbon dioxide removed or offset. To achieve carbon neutrality, tourism operators and destinations take various measures to reduce their greenhouse gas emissions. This can include using renewable energy sources, implementing energy-efficient practices, promoting sustainable transport options, and adopting eco-friendly technologies. Additionally, carbon offsetting is often employed, which involves investing in projects that reduce greenhouse gas emissions elsewhere, such as reforestation or renewable energy initiatives. The concept of carbon neutral tourism recognizes the significant contribution of the travel and tourism industry to global carbon emissions. According to the United Nations World Tourism Organization, tourism accounts for around 8% of global greenhouse gas emissions. By embracing carbon neutrality, the industry acknowledges its responsibility to minimize its environmental impact and contribute to climate change mitigation efforts. One of the key benefits of carbon neutral tourism is the reduction of greenhouse gas emissions, which helps combat climate change. By adopting sustainable practices and offsetting remaining emissions, destinations and operators can play a crucial role in preserving natural resources, protecting biodiversity, and minimizing pollution. Moreover, carbon neutral tourism can also enhance the reputation and competitiveness of businesses and destinations, attracting environmentally conscious travelers who prioritize sustainability. However, it is important to note that achieving carbon neutrality is a complex task that requires commitment and collaboration from all stakeholders involved in the tourism industry. It involves measuring and monitoring emissions, setting reduction targets, implementing sustainable practices, and investing in carbon offset projects. Moreover, transparency and credibility are crucial in ensuring that carbon offset initiatives are verifiable and contribute to real emissions reductions. In conclusion, carbon neutral tourism is a proactive approach to minimize the environmental impact of travel and tourism activities. It involves reducing emissions and offsetting remaining ones to achieve a net-zero carbon footprint. By embracing carbon neutrality, the tourism industry can contribute to global climate change mitigation efforts while simultaneously promoting sustainable practices and attracting environmentally conscious travelers.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords