• Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 1
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 2
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 3
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 4
  • Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter System 5
Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter

Photovoltaic Grid-Connected Inverter SG630MX-E Solar Inverter

Ref Price:
$30,000.00 - 40,000.00 / unit get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG630MX-E Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment.

Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, Australia and Europe.

  

2. Main Features of the Photovoltaic Grid-Connected Inverter SG630MX-E

• LVRT (Zero-voltage Ride-through)

• Active power continuously adjustable (0~100%)

• Reactive power control with power factor from 0.9 lagging to 0.9 leading

• DC input voltage up to 1000V

• Latest 32 bit DSP chip, advanced digital lock-in technique, more quickly and precisely

• -30℃~+55℃ continuously operating at rated power

• Continuously and stably working in high altitude environment

• Auxiliary heater (Optional)

 

3. Photovoltaic Grid-Connected Inverter SG630MX-E Images

 

4. Photovoltaic Grid-Connected Inverter SG630MX-E Specification

Input Side Data

Max. PV input power

713KW

Max. PV input voltage

1000V

Startup voltage

635V

Min. operation voltage

615V

Max. PV input current

1160A

MPP voltage range

615~850V

No. of DC inputs

8

Output Side Data

Nominal AC output power

630kVA

Max. AC output apparent power

700KVA

Max. AC output current

1010A

THD

< 3 %  (Nominal power)

Nominal AC voltage

400V

AC voltage range

320V~460V

Nominal grid frequency

50/60Hz

Grid frequency range

47~52/57~62Hz

Power factor

>0.99@default value at nominal power, (adj. 0.9 overexited ~0.9 underexited)

Isolated transformer

No

DC current injection

<0.5 %In

Efficiency

Max. efficiency

98.60%

Max. European efficiency

98.50%

Protection

Input side disconnection device

DC load switch

Output side disconnection device

AC load Switch

DC overvoltage protection

Yes

AC overvoltage protection

Yes

Grid monitoring

Yes

Ground fault monitoring

Yes

Over temperature protection

Yes

Insulation monitoring

Yes

Surge arrester for auxiliary supply

Yes

General Data

Dimensions(W×H×D)

1606×2304×860mm

Weight

1700kg

Operating ambient temperature range

-30~65℃(>55℃ derating)

Night power consumption

<100W

External auxiliary supply voltage

400V

Cooling method

Temperature controlled air-cooling

Ingress protection rating

IP21

Allowable relative humidity range

0~95% no condensing

Max. operating altitude

6000m (>3000m derating)

Fresh air consumption

4500 m3/h

Display

Colored touch screen

Communication

RS485/Modbus, Ethernet(Opt.)

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG630MX-E

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

Q:How does a solar inverter handle voltage drops in the electrical wiring?
A solar inverter handles voltage drops in the electrical wiring by continuously monitoring the voltage and adjusting its output accordingly. It boosts the voltage if it detects a drop, ensuring that the desired voltage levels are maintained for efficient power transmission and utilization.
Q:Can a solar inverter be used for commercial applications?
Yes, a solar inverter can be used for commercial applications. Solar inverters are an essential component of commercial solar power systems, as they convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power commercial buildings and equipment.
Q:What is the maximum output voltage of a solar inverter?
The maximum output voltage of a solar inverter depends on its design and specifications. Generally, the maximum output voltage can range from 240 to 600 volts for residential inverters, and up to several thousand volts for commercial or utility-scale inverters.
Q:What are the safety certifications to look for in a solar inverter?
Some safety certifications to look for in a solar inverter include UL 1741, IEC 62109, and CSA C22.2 No. 107.1. These certifications ensure that the inverter meets specific safety standards, such as protection against electrical shocks, fire hazards, and grid disturbances. It is essential to check for these certifications to ensure the safe and reliable operation of the solar inverter.
Q:What is the maximum power capacity that a solar inverter can handle?
The maximum power capacity that a solar inverter can handle varies depending on the specific model and brand. However, modern solar inverters can typically handle power capacities ranging from a few hundred watts to several megawatts.
Q:How long do solar inverters typically last?
Solar inverters typically last for around 10 to 15 years, although some high-quality inverters can last up to 20 years with proper maintenance and regular inspections.
Q:Can a solar inverter be used in areas with high levels of dust or pollution?
Yes, a solar inverter can be used in areas with high levels of dust or pollution. However, it is important to regularly clean and maintain the inverter to ensure its optimal performance. Dust and pollution can potentially accumulate on the inverter's surface, affecting its efficiency and lifespan. Regular cleaning and maintenance will help mitigate any issues and ensure the inverter continues to function effectively.
Q:How do I choose the right solar inverter for my system?
When choosing the right solar inverter for your system, there are several factors to consider. Firstly, you need to assess the size and capacity of your solar panel system to ensure that the inverter can handle the expected power generation. Additionally, consider the type of inverter, such as string inverters, microinverters, or power optimizers, based on the specific needs and limitations of your system. It's also essential to check the inverter's efficiency, warranty, and reliability, as well as compatibility with other system components like batteries or monitoring systems. Lastly, consider your budget and choose an inverter that offers a balance between quality and cost-effectiveness. Consulting with a professional solar installer can provide valuable insights and help you make an informed decision.
Q:How does a solar inverter handle harmonics in the grid?
A solar inverter handles harmonics in the grid by implementing various techniques such as filtering, synchronization, and control algorithms. These techniques help in mitigating harmonics and ensuring that the power generated from the solar panels is synchronized and compatible with the grid's electrical frequency and voltage. The inverter's control system monitors the grid's harmonics and adjusts its output accordingly to minimize any adverse effects and maintain grid stability.
Q:What is the role of a solar inverter in preventing islanding?
The role of a solar inverter in preventing islanding is to constantly monitor the electrical grid and immediately disconnect from it if it detects a fault or disruption. By disconnecting from the grid, the solar inverter ensures that it does not continue to generate power and create a self-sustaining island of electricity, which could pose a safety risk for utility workers attempting to fix the fault.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords