• Photovoltaic Grid-Connected Inverter SG40KTL System 1
  • Photovoltaic Grid-Connected Inverter SG40KTL System 2
  • Photovoltaic Grid-Connected Inverter SG40KTL System 3
  • Photovoltaic Grid-Connected Inverter SG40KTL System 4
  • Photovoltaic Grid-Connected Inverter SG40KTL System 5
Photovoltaic Grid-Connected Inverter SG40KTL

Photovoltaic Grid-Connected Inverter SG40KTL

Ref Price:
$3,310.00 - 5,500.00 / unit get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Photovoltaic Grid-Connected Inverter SG40KTL Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

 autility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network.

It is acritical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment.

Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Suitable for 50Hz/60Hz grid, could be used in Asia, Africa and Europe. Available for hand installation, no need for lifting machinery

 assistance.

 

2. Main Features of the Photovoltaic Grid-Connected Inverter SG40KTL

• Full 36kW effective power at power factor of 0.9 due to apparent power reserves up to 39.8kVA

• Max. Efficiency at 98.3%

• Dual MPP trackers control

• Reduced cabling on AC side due to higher output voltage of 480Vac

• Integrated combiner box: 8 x MC4 connector pairs with DC string fuses, Type II overvoltage protection and DC switch, more safety and lower the system cost

• Can be wall-mounted without lifting equipment, weight 65 kg

• Active power continuously adjustable (0~100%)

• Reactive power control with power factor 0.8 overexcited ~ 0.8 underexcited

• Includes RS-485 interface, compatible with all common monitoring systems

• Product certification: TÜV, BDEW and CGC

• Manufacturer certification: ISO 9001, ISO 14001, OHSAS 18000

 

3. Photovoltaic Grid-Connected Inverter SG40KTL Images

 

 

4. Photovoltaic Grid-Connected Inverter SG40KTL Specification

Input Side Data

Max. PV input power

40500W

Max. PV input voltage

1000V

Startup voltage

300V

Nominal input voltage

710V

MPP voltage range

280~950V

MPP voltage range for nominal power

560~800V

No. of MPPTs

2

Max. number of PV strings per MPPT

4

Max. PV input current

66A(33A/33A)

Max. current for input connector

12A 

Output Side Data

Nominal AC output power

36000W

Max AC output power(PF=1)

39800W

Max. AC output apparent power

39800VA

Max. AC output current

48A

Nominal AC voltage

3/N/PE, 277/480Vac or 3/PE, 480Vac

AC voltage range

422~528Vac 

Nominal grid frequency

50Hz/60Hz

Grid frequency range

45~55Hz/55~ 65Hz

THD

< 3 %  (Nominal power)

DC current injection

<0.5 %In

Power factor

>0.99@default value at nominal power

(adj. 0.8overexcited ~0.8underexited)

Protection

Anti-islanding protection

Yes

LVRT

Yes

DC reverse connection protection

Yes

AC short circuit protection

Yes

Leakage current protection

Yes

DC switch

Yes

DC fuse

Yes

Overvoltage protection

DC Type II DIN rail surge arrester(40KA)

System Data

Max. efficiency

98.30%

Max. European efficiency

98.00%

Isolation method

Transformerless

Ingress protection rating

IP65

Night power consumption

<1W

Operating ambient temperature range

-25~60℃(>45℃ derating)

Allowable relative humidity range

0~100%

Cooling method

Smart forced air cooling

Max. operating altitude

4000m (>3000m derating) 

Display

Graphic LCD

Communication

RS485(RJ45 connector)

DC connection type

MC4

AC connection type

Screw Clamp terminal

Certification

VDE0126-1-1, EN62109-1, EN62109-2,BDEW,

CGC, NRS 097-2-1, GB/T 19964, UTE C15-712-1

IEC 61683, IEC 60068-2, IEC61727, IEC62116,

IEC62109-1, IEC62109-2, EN50178, IEC62103,

EN61000-6-1, EN61000-6-2, EN61000-6-3, EN61000-6-4

Mechanical Data

Dimensions(W×H×D)

634×820×257mm

Mounting method

Wall bracket

Weight

65kg

 

5. FAQ of Photovoltaic Grid-Connected Inverter SG40KTL

Q1. What is the difference between inverter and solar inverter?

    A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

Q2. What is the difference between MPPT&PWM?

    A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

Q:Can a solar inverter be used for commercial applications?
Yes, a solar inverter can be used for commercial applications. Solar inverters are an essential component of commercial solar power systems, as they convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power commercial buildings and equipment.
Q:How does a solar inverter synchronize with the grid frequency?
A solar inverter synchronizes with the grid frequency by continuously monitoring the frequency of the electrical power supplied by the grid. It adjusts its own output frequency to match the grid frequency using a built-in control mechanism. This synchronization ensures that the solar inverter's power is in phase with the grid power, allowing it to smoothly inject electricity into the grid without causing disruptions or power quality issues.
Q:Are all solar inverters compatible with all solar panels?
No, not all solar inverters are compatible with all solar panels. The compatibility between solar inverters and panels depends on various factors such as the voltage, current, and type of panels being used, as well as the specifications and requirements of the specific inverter model. It is important to ensure that the inverter is compatible with the specific type and configuration of solar panels being installed to ensure optimal performance and efficiency.
Q:Can a solar inverter be used with a remote control system?
Yes, a solar inverter can be used with a remote control system. Many modern solar inverters are equipped with built-in communication capabilities, such as Wi-Fi or Ethernet connectivity, which allows them to be remotely monitored and controlled. This enables users to adjust settings, monitor energy production, and receive real-time alerts or notifications through a remote control system.
Q:Can a solar inverter be used with a backup power supply (UPS)?
Yes, a solar inverter can be used with a backup power supply (UPS). The UPS can provide power during periods of low solar generation or in case of a grid outage, ensuring a continuous power supply.
Q:What is the maximum voltage input for a solar inverter?
The maximum voltage input for a solar inverter typically depends on the specific model and manufacturer. However, in general, most solar inverters have a maximum voltage input ranging from 600V to 1000V.
Q:How does a solar inverter handle frequency fluctuations in the grid?
A solar inverter handles frequency fluctuations in the grid by continuously monitoring the frequency of the grid and adjusting its output accordingly. If the grid frequency increases, the inverter reduces its output, and if the grid frequency decreases, the inverter increases its output. This helps to stabilize the grid frequency and maintain a balanced power supply.
Q:What are the installation requirements for a solar inverter?
The installation requirements for a solar inverter typically include a stable mounting surface, proper ventilation and clearance space, a compatible electrical connection, and compliance with local building codes and regulations. Additionally, the solar inverter should be installed in a location that receives adequate sunlight for efficient operation.
Q:What is the role of a power control unit in a solar inverter?
The role of a power control unit in a solar inverter is to regulate and control the flow of electricity from the solar panels to the electrical grid or to the connected load. It ensures efficient power conversion by managing voltage, current, and frequency, and provides protection against overvoltage, under voltage, and short circuits. Additionally, the power control unit may also include features like maximum power point tracking (MPPT) to optimize the energy output from the solar panels.
Q:Can a solar inverter be used in a three-phase power system?
Yes, a solar inverter can be used in a three-phase power system. In fact, there are specific types of solar inverters designed to work with three-phase power systems. These inverters are capable of converting the DC power generated by solar panels into AC power, which can be seamlessly integrated into the three-phase power grid.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords