• Hybrid Inverter Sunbrid 3000 Can Be OEM Designed System 1
  • Hybrid Inverter Sunbrid 3000 Can Be OEM Designed System 2
  • Hybrid Inverter Sunbrid 3000 Can Be OEM Designed System 3
Hybrid Inverter Sunbrid 3000 Can Be OEM Designed

Hybrid Inverter Sunbrid 3000 Can Be OEM Designed

Ref Price:
get latest price
Loading Port:
Guangzhou
Payment Terms:
TT OR LC
Min Order Qty:
10 pc
Supply Capability:
3000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Sunbrid 2000/3000 hybrid solar inverter can be use as on grid solar inverter or off grid inverter.

1.futures

Multiple operations: Grid-tied, off-grid, and grid-tied with battery backup
•Solar power usage  priority selectable
•Built-in MPPT solar charger
•Intelligent control to guarantee stable system charging  
•Comprehensive information from LCD display

2.datasheet

MODELSunbrid 2000Sunbrid 3000
RATED POWER2000 W3000 W
GRID-TIE OPERATION
PV INPUT (DC) 
Nominal DC Voltage300 VDC360 VDC
Maximum DC Voltage350 VDC500 VDC
Start-up Voltage / Initial Feeding Voltage80 VDC / 120 VDC116 VDC / 150 VDC
MPP Voltage Range120 VDC ~ 320 VDC120 VDC ~ 450 VDC
Maximum Input Current 15 A13 A

 3.Certificate

ISO

CE

TUV

4.PRODUCT OUTLOOK

Hybrid Inverter Sunbrid 3000 Can Be OEM Designed

 

1.   How long will my inquiry get response?
 Your inquiry related to our products or prices will be replied within 24 hours. 
 2.  Can I get professional service and suggestion?
Well-trained and experienced staffs to answer all your questions in fluent English. 
 3.  Do you accept OEM or customized design?
OEM & ODM, any your customized lightings we can help you to design and put into product.
 4.  What if I need specific design?
Distributorship are offered for your unique design and some our current models.

 

 

Q:How does the input voltage range affect the performance of a solar inverter?
The input voltage range directly affects the performance of a solar inverter. A wider input voltage range allows the inverter to accommodate a greater variety of solar panel configurations and fluctuations in solar energy production. This flexibility ensures optimal operation and increased energy conversion efficiency, resulting in better overall performance. On the other hand, a narrow input voltage range restricts the inverter's compatibility and may lead to reduced efficiency and output power.
Q:What are the key safety features to look for in a solar inverter?
The key safety features to look for in a solar inverter include: 1. Overvoltage and undervoltage protection: This feature ensures that the inverter can handle voltage fluctuations and prevents damage to the electrical system. 2. Ground fault protection: It is essential for the inverter to have ground fault protection to prevent electric shocks and ensure the safety of the system. 3. Anti-islanding protection: This feature ensures that the solar inverter shuts down in the event of a power outage, preventing it from sending power back to the grid and endangering utility workers. 4. Overtemperature protection: A reliable solar inverter should have overtemperature protection to prevent overheating and potential fire hazards. 5. Surge protection: The inverter should have built-in surge protection to safeguard against power surges caused by lightning strikes or grid fluctuations. 6. Arc fault protection: This safety feature detects and mitigates the risk of arc faults, which can result in electrical fires, by rapidly shutting down the inverter. 7. Monitoring and fault detection: A good solar inverter should have a monitoring system that detects faults or abnormalities in real-time, allowing for prompt maintenance and troubleshooting. 8. Compliance with safety standards: Ensure that the solar inverter complies with relevant safety standards, such as UL (Underwriters Laboratories) or IEC (International Electrotechnical Commission), to guarantee its safety and reliability. By considering these key safety features, you can ensure the overall safety and performance of your solar inverter system.
Q:How does the weight of a solar inverter affect its installation process?
The weight of a solar inverter can affect its installation process in a few ways. Firstly, a heavier inverter may require additional structural support or mounting equipment to ensure it is securely installed. This could involve reinforcing the mounting surface or using specialized brackets or racks. Secondly, the weight of the inverter may impact the ease of handling and maneuvering during installation, especially if it needs to be installed in elevated or hard-to-reach areas. Lastly, the weight can also impact the overall logistics of the installation, including transportation, lifting, and positioning of the inverter.
Q:Can a solar inverter be used with a solar-powered air cooling system?
Yes, a solar inverter can be used with a solar-powered air cooling system. The solar inverter is responsible for converting the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power various devices, including air cooling systems. By connecting the solar panels to the solar inverter, the generated solar energy can be efficiently utilized to power the air cooling system, making it a sustainable and eco-friendly cooling solution.
Q:How does the total harmonic distortion affect the performance of a solar inverter?
Total harmonic distortion (THD) refers to the distortion in the waveform of an electrical signal caused by the presence of harmonics. In the case of a solar inverter, high levels of THD can negatively impact its performance. Excessive THD can lead to voltage and current waveform distortions, which can result in various issues such as reduced power quality, increased losses, and decreased efficiency of the solar inverter. These distortions can also affect the overall performance and lifespan of connected electrical devices, potentially leading to their malfunction or premature failure. Therefore, it is crucial to ensure that a solar inverter maintains low levels of THD to optimize its performance and minimize any adverse effects on the connected electrical systems.
Q:What are the key factors affecting the efficiency of a solar inverter?
The key factors affecting the efficiency of a solar inverter include the quality and design of the components used, the temperature at which the inverter operates, the type and condition of the solar panels connected to it, the efficiency of the conversion process from DC to AC power, and the overall system design and installation.
Q:Can a solar inverter be used with electric vehicles?
No, a solar inverter cannot directly be used with electric vehicles. Solar inverters are designed to convert DC (direct current) from solar panels into AC (alternating current) for home or grid use. Electric vehicles, on the other hand, require DC power to charge their batteries. However, solar energy generated through a solar inverter can be used to charge the batteries of an electric vehicle indirectly by connecting the solar system to the power grid or using a separate charging station equipped with a suitable DC charger.
Q:Can a solar inverter be used in systems with different module currents?
Yes, a solar inverter can be used in systems with different module currents. Solar inverters are designed to convert the DC power generated by solar panels (modules) into AC power that can be used by electrical devices. They are typically equipped with Maximum Power Point Tracking (MPPT) technology, which allows them to optimize the power output from the solar panels regardless of their current ratings. This means that solar inverters can efficiently handle systems with different module currents and ensure the maximum power generation from the solar panels.
Q:What is the role of a display interface in a solar inverter?
The role of a display interface in a solar inverter is to provide real-time information and control options to the user. It allows them to monitor the performance of the solar inverter, such as power output, energy production, and system status. The display interface also provides access to various settings and configuration options, allowing the user to optimize the performance of the solar inverter based on their specific requirements.
Q:What is the role of a transformer in a solar inverter?
The role of a transformer in a solar inverter is to convert the direct current (DC) power generated by the solar panels into alternating current (AC) power that can be used by household appliances and fed back into the electrical grid. The transformer helps to step up or step down the voltage as necessary and provides isolation between the solar panels and the grid, ensuring safe and efficient power transmission.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords