• CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS System 1
  • CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS System 2
  • CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS System 3
  • CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS System 4
  • CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS System 5
  • CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS System 6
CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System  On Grid ESS

CNBM Energy Storage 1228V2752kWh Hybrid Lithium Battery Solar Power System On Grid ESS

Ref Price:
get latest price
Loading Port:
Stock in Panama
Payment Terms:
TT OR LC
Min Order Qty:
50 set
Supply Capability:
10000 set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Application:
Industrial
Output Voltage (V):
1036V
Work Time (h):
100 hours and longer

CNBM Energy Storage 300kwh 500kwh Hybrid Lithium Battery Solar Power System 100KW On Grid ESS

Liquid cooled high voltage LFP BATTERY ENERGY STORAGE SYSTEM

SDC-ESS-R1228V2752kWh It is a LFP battery container designed for high-capacity energy storage systems, mainly used in large-scale renewable energy generation consumption, power grid peak regulation and frequency regulation, emergency backup, delayed distribution network upgrade, distributed generation and microgrid systems. Modular design, strong scalability, can meet the power and energy needs of different user scenarios. The battery module has a rated voltage of 1228V and a rated capacity of 280Ah。


Product features 


SDC-ESS-R1228V2752kWh It is a LFP battery container designed for high-capacity energy storage systems, mainly used in large-scale renewable energy generation consumption, power grid peak regulation and frequency regulation, emergency backup, delayed distribution network upgrade, distributed generation and microgrid systems. Modular design, strong scalability, can meet the power and energy needs of different user scenarios. The battery module has a rated voltage of 1228V and a rated capacity of 280Ah。 Liquid-cooled H

uHigh Security:The use of LFP material system, with high safety, long life, stable and reliable characteristics; The protection level of the battery module is IP65 or above, which can effectively prevent condensation and salt spray erosion. 

uHigh Performance Liquid-cooling Technology:Adopt intelligent temperature control and balanced design, single PACK temperature difference ≤ 3 °C. 

uMulti-dimensional Fire Protection Design:Equipped with cell level, PACK level, cabin class three-level fire protection design, equipped with temperature sensitivity, combustible gas detection and other detection sensors, water fire, cabin gas fire and PACK level gas fire compatible design, flexible selection.

uStandardized Modules:The standardized module design is adopted, which is highly extensible and can meet the power and energy requirements of different scenarios. All components are pre-installed in the factory, saving onsite installation and commissioning workload and meeting the overall marine transportation


1



Q:Can solar energy systems be installed on industrial facilities?
Yes, solar energy systems can be installed on industrial facilities. In fact, many industrial facilities have already adopted solar energy as a viable and sustainable source of power. These systems can significantly reduce energy costs, decrease reliance on fossil fuels, and contribute to a greener and more sustainable future for industrial operations.
Q:Can solar energy systems be installed on historical buildings?
Yes, solar energy systems can be installed on historical buildings. However, it requires careful consideration and expertise to ensure that the installation does not compromise the historical integrity of the building. Solar panels can be mounted on rooftops or integrated into the building's design in a visually appealing and non-intrusive manner. Historic preservation guidelines, local regulations, and the expertise of architects and preservation professionals play a crucial role in determining the feasibility and appropriate installation methods for solar energy systems on historical buildings.
Q:Can solar energy systems be used for powering off-grid sustainable communities?
Yes, solar energy systems can be used to power off-grid sustainable communities. Solar panels can generate electricity from sunlight, which can be stored in batteries for later use. This renewable energy source is clean, abundant, and can be harnessed in remote areas where grid access is limited. By relying on solar power, off-grid sustainable communities can reduce their reliance on fossil fuels, lower their carbon footprint, and achieve long-term energy independence.
Q:Can solar energy systems be used for powering aquaculture systems?
Aquaculture systems can indeed be powered by solar energy. Solar power is a sustainable and renewable source of energy that can be utilized to generate electricity. This electricity can then be employed to operate different components of aquaculture systems, including water pumps, aerators, heaters, and lighting. The utilization of solar energy in aquaculture systems presents several advantages. Firstly, it decreases dependence on finite traditional fossil fuels, which contribute to both environmental pollution and climate change. By adopting solar power, aquaculture systems can significantly decrease their carbon footprint and contribute to a cleaner and more environmentally friendly energy future. Secondly, solar energy is abundantly available in numerous regions worldwide. By harnessing the sun's power, aquaculture systems can function independently of the electricity grid, benefiting remote areas that can now engage in sustainable aquaculture practices. Thirdly, solar energy systems offer long-term cost savings. Although the initial setup and installation costs may be higher compared to conventional energy sources, solar energy systems have significantly lower operational expenses. Once the system is installed, solar power is essentially free, and maintenance costs are minimal. This can result in substantial savings over time, making solar-powered aquaculture systems a financially viable choice. Lastly, solar energy systems can be integrated with other renewable energy technologies, such as battery storage systems. This enables surplus solar energy to be stored and utilized during periods of low sunlight, ensuring a consistent and reliable power supply for aquaculture systems. In conclusion, solar energy systems are an effective means of powering aquaculture systems, offering numerous benefits including environmental sustainability, energy independence, cost savings, and integration with other renewable energy technologies.
Q:Can solar energy systems be used in areas with frequent hurricanes?
Solar energy systems are indeed viable in areas prone to hurricanes. Despite the potential damage hurricanes can inflict on these systems, there are strategies to mitigate the associated risks. To begin with, it is possible to design and install solar energy systems in hurricane-prone regions in a manner that can withstand strong winds. This involves employing sturdier mounting systems, reinforced frames, and secure anchoring techniques. Additionally, optimizing the orientation and tilt angle of the solar panels can minimize wind resistance. Furthermore, regular maintenance and inspections are crucial for identifying any potential issues or damages before a hurricane strikes. This proactive approach allows for timely repairs or replacements, ensuring the system remains operational and secure during severe weather events. In the event of a hurricane, it is important to have emergency protocols in place to safeguard the solar panels and other components. Temporary removal of the panels and indoor storage or utilization of protective covers to shield them from debris are some viable options. Moreover, the use of microinverters or power optimizers can enhance the resilience of solar energy systems in hurricane-prone areas. These advanced technologies enable each solar panel to function independently, minimizing the impact of damage to a single panel and preventing the entire system from shutting down. Lastly, solar energy systems can contribute to the resilience of communities during and after hurricanes. By incorporating proper battery storage, these systems can provide backup power during power outages, ensuring the continuity of essential services and meeting critical electricity needs like lighting, refrigeration, and medical equipment. In conclusion, although precautions must be taken to ensure the durability and functionality of solar energy systems in hurricane-prone areas, they can effectively harness clean and renewable energy even in the face of frequent hurricanes.
Q:Can solar energy systems be used in areas with limited roof access for maintenance?
Solar energy systems can indeed be utilized in areas where roof access for maintenance is limited. Although the usual practice is to install solar panels on rooftops for maximum exposure to sunlight, there are alternative choices to consider. One option is to install ground-mounted solar panels in areas where roof access is restricted, making maintenance and cleaning tasks simpler. Furthermore, solar panel systems can be integrated into other structures like carports or pergolas, offering an alternative approach to the conventional rooftop installations. These alternatives guarantee the effective utilization of solar energy systems in areas with limited roof access for maintenance.
Q:Can solar energy systems be used in areas with high levels of bird activity?
Yes, solar energy systems can be used in areas with high levels of bird activity. However, it is important to take certain precautions to ensure the safety of the birds and the optimal functioning of the solar panels. One common concern is the potential for bird collisions with the panels. To mitigate this, manufacturers often incorporate bird deterrents such as mesh screens or reflective coatings on the panels to make them more visible to birds and reduce the risk of collisions. Additionally, proper installation and maintenance of the solar energy systems can help minimize potential nesting or roosting sites for birds, reducing the likelihood of damage to the panels. By addressing these considerations, solar energy systems can be effectively utilized in areas with high bird activity while still protecting the local avian population.
Q:Can solar panels be used to power agricultural irrigation systems?
Yes, solar panels can be used to power agricultural irrigation systems. Solar energy can be converted into electricity, which can then be used to power pumps and other irrigation equipment. This sustainable and renewable energy source offers a cost-effective and environmentally friendly solution for powering irrigation systems in remote and off-grid areas.
Q:Can solar energy systems be used for powering remote communication towers?
Yes, solar energy systems can be effectively used for powering remote communication towers. They provide a reliable and sustainable source of power in areas where grid connectivity is limited or non-existent. Solar panels can be easily installed on the tower structures and their energy can be stored in batteries for continuous power supply, even during cloudy or nighttime conditions. This not only reduces the dependence on diesel generators but also helps in reducing carbon emissions and operational costs.
Q:Are there any risks of electromagnetic radiation with solar energy systems?
Yes, there are potential risks of electromagnetic radiation associated with solar energy systems. Solar energy systems use photovoltaic (PV) panels to convert sunlight into electricity. These panels generate direct current (DC) electricity, which is then converted into alternating current (AC) electricity for use in our homes and businesses. One potential source of electromagnetic radiation is the inverter, which is responsible for converting DC electricity into AC electricity. In some cases, these inverters can produce electromagnetic fields (EMFs) that may emit low-frequency radiation. While these EMFs are generally considered to be low and within acceptable limits, there is ongoing research to better understand any potential health effects associated with long-term exposure to these fields. Another potential risk is the presence of high-frequency electromagnetic radiation from radio frequency (RF) communication devices, such as wireless monitoring systems or communication modules used in solar energy systems. These devices transmit and receive signals wirelessly, and there is some concern about the potential health effects of long-term exposure to RF radiation. However, the power levels of these devices are generally low, and they are designed to comply with safety standards and regulations. It is important to note that the risks associated with electromagnetic radiation from solar energy systems are generally considered to be low compared to other sources of electromagnetic radiation in our everyday lives, such as cell phones, Wi-Fi routers, or power lines. Nonetheless, it is always recommended to follow safety guidelines provided by manufacturers and industry standards to minimize any potential risks.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords