• Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency System 1
  • Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency System 2
  • Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency System 3
Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency

Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency

Ref Price:
$200.00 - 500.00 / unit get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
50 unit
Supply Capability:
1000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features:

. Pure sine wave inverter
. Selectable input voltage range for home appliances and personal computers
. Selectable charging current based on applications
. Configurable AC/Solar input priority via LCD setting
. Compatible to mains voltage or generator power
. Parallel operation with up to 4 units only available for PV200 4KVA/5KVA
. Auto restart while AC is recovering
. Overload and short circuit protection
. Smart battery charger design for optimized battery performance
. Cold start function

 

PV1800 5KVA, Off-grid solar and utility inverter with parallel operation.

Model

PV1800-1KVA

PV1800-2KVA

PV1800-3KVA

PV1800-4KVA

PV1800-5KVA

RATED POWER

1000VA / 800W

2000VA/
1600W

3000VA / 2400W

4000VA / 3200W

5000VA / 4000W

INPUT

Voltage

230 VAC

Selectable Voltage Range

170-280 VAC (For Personal Computers) ; 90-280 VAC (For Home Appliances)

Frequency Range

50 Hz/60 Hz (Auto sensing)

OUTPUT

AC Voltage Regulation
(Batt. Mode)

230 VAC ± 5%

Surge Power

2000VA

4000VA

6000VA

8000VA

10000VA

Efficiency (Peak)

90%

93%

Transfer Time

10 ms (For Personal Computers) ; 20 ms (For Home Appliances)

Waveform

Pure sine wave

BATTERY

Battery Voltage

12 VDC

24 VDC

48 VDC

Floating Charge Voltage

13.5 VDC

27 VDC

54 VDC

Overcharge Protection

15 VDC

30 VDC

60 VDC

Maximum Charge Current

10 A or 20 A

20 A or 30 A

20 A or 30 A

SOLAR CHARGER (OPTION)

Charging Current

50 A

Maximum PV Array Open Circuit Voltage

30 VDC

60 VDC

90 VDC

Standby power Consumption

1 W

2 W

2 W

PHYSICAL

Dimension, D x W x H (mm)

95 x 240 x 316

100 x 272 x 355

120 x 295 x 468

Net Weight (kgs)

5.0

6.4

6.9

9.8

9.8

OPERATING ENVIRONMENT

Humidity

5% to 95% Relative Humidity(Non-condensing)

Operating Temperature

0°C - 55°C

Storage Temperature

-15°C - 60°C

 

Images

Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency

Solar Inverter PV1800 5KVA Off-grid With Parallel Operation Low Frequency

Warranty

provides a 1~3 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later. This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to MUST-Solar. This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

FAQ

1.How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2. Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3. How do I install my system ?

A must solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

Q:How do you calculate the efficiency of a solar inverter?
The efficiency of a solar inverter can be calculated by dividing the output power of the inverter by the input power it receives from the solar panels. This ratio is then multiplied by 100 to express the efficiency as a percentage.
Q:How does a solar inverter handle voltage regulation during load changes?
A solar inverter handles voltage regulation during load changes by continuously monitoring the voltage and adjusting its output accordingly. It uses advanced control algorithms to regulate the voltage and ensure a stable and consistent supply of power to the connected load, even during fluctuations in demand. This allows the inverter to efficiently adapt to changing load conditions and maintain the desired voltage levels.
Q:What is maximum power point tracking (MPPT) in a solar inverter?
The technique known as maximum power point tracking (MPPT) is employed in solar inverters for the purpose of optimizing the power output of a photovoltaic (PV) system. When solar panels are exposed to sunlight, they generate electricity, but the amount of power they produce can vary depending on factors such as temperature, shading, and the angle at which sunlight strikes them. The maximum power point (MPP) is the specific point at which a solar panel generates the greatest amount of power given the prevailing environmental conditions. However, because these conditions are constantly changing, it is crucial to continuously track the MPP in order to ensure that the solar panels achieve the highest possible power output. Solar inverters equipped with MPPT functionality employ advanced algorithms and electronics to continuously monitor the voltage and current output of the solar panels. By dynamically adjusting the operating voltage and current to align with the MPP, the MPPT inverter ensures that the solar panels operate at their most efficient, regardless of how the environmental conditions may change. When the solar panels are functioning at their MPP, the MPPT inverter extracts the maximum amount of power from the panels and converts it into usable AC power. This optimization leads to increased overall energy generation and maximizes the return on investment for solar power systems. In addition to enhancing efficiency, MPPT also provides other advantages. It can compensate for fluctuations in solar irradiation, temperature, or shading that might impact the power output of the panels. By continually tracking the MPP, the MPPT inverter adjusts the operating parameters to minimize the impact of these factors, ensuring a consistent and optimal power output. In summary, MPPT is a critical feature in solar inverters as it maximizes the power output of a PV system by continuously tracking and adjusting the operating parameters to align with the MPP. This technology enables solar power systems to operate at their highest efficiency, enhance energy generation, and maximize the benefits of utilizing renewable energy sources.
Q:Can a solar inverter be used in a commercial or industrial setting?
Yes, a solar inverter can indeed be used in a commercial or industrial setting. In fact, solar inverters are commonly used in these settings to convert the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various electrical loads in the facility. This helps businesses and industries reduce their reliance on traditional energy sources and save on electricity costs while promoting sustainability.
Q:What are the key factors affecting the warranty coverage of a solar inverter?
The key factors affecting the warranty coverage of a solar inverter include the length of the warranty period, the reputation and reliability of the manufacturer, the quality of the components used in the inverter, any specified usage restrictions or limitations, and the level of technical support and after-sales service provided by the manufacturer.
Q:How does a solar inverter handle voltage phase imbalance in the grid?
A solar inverter handles voltage phase imbalance in the grid by continuously monitoring the grid's voltage and frequency. If it detects any phase imbalance, it adjusts its output to balance the voltage across all phases. This ensures that the power generated by the solar panels is synchronized with the grid and prevents any issues that may arise due to phase imbalances, such as equipment damage or power quality issues.
Q:Can a solar inverter be used in mobile applications?
Yes, a solar inverter can be used in mobile applications. Portable solar inverters are designed specifically for mobile use and are commonly used in recreational vehicles, boats, camping, and other off-grid applications. These inverters convert the direct current (DC) generated by solar panels into alternating current (AC) to power mobile devices and appliances.
Q:How does a solar inverter handle power factor optimization?
A solar inverter handles power factor optimization by using advanced control algorithms to adjust the phase relationship between the voltage and current supplied by the inverter. This allows the inverter to operate at a power factor close to unity, which maximizes the efficiency and performance of the solar power system.
Q:Can a solar inverter be used with a solar-powered street lighting system?
Yes, a solar inverter can be used with a solar-powered street lighting system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power electrical devices. In the case of a solar-powered street lighting system, the solar inverter can convert the DC power generated by the solar panels into AC power to operate the street lights. This allows the system to efficiently utilize the energy generated by the sun and provide reliable lighting for the streets.
Q:Can a solar inverter be used with different types of grounding configurations?
Yes, a solar inverter can be used with different types of grounding configurations. However, it is important to ensure that the inverter is compatible with the specific grounding configuration being used in order to maintain safety and performance.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords