• PV Solar Energy Panel Mono TUV with IEC61215 System 1
PV Solar Energy Panel Mono TUV with IEC61215

PV Solar Energy Panel Mono TUV with IEC61215

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
500000 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Specifications

1.withstand high wind pressure and snow load.

2.with IEC61215/61730, TUV, CE, ISO

3.high conversion efficiency

ITEM NO.NBJ-180 M
Maximum Power (W)180
Optimum Power Voltage (V mp)36.9
Optimum Operating Current (I mp): 4.88
Open Circuit Voltage (Voc)44.3
Short Circuit Current (ISC)5.22
Cell Efficiency (%)16.50%
Module Efficiency (%)14.10%
FF (%)70-76%
Warranty90% of 10 years, 80% of 25 years.
Standard Test ConditionsAM1.5 1000W/m2 25 +/-2°C
Bypass Diode Rating (A)12
Cable & Connector TypePass the TUV Certificate
Brand Name of Solar Cells----Cell
Size of Module (mm)1580*808*35
Solar Cell125*125 Mono
Backing (Material)TPT
Frame (Material Corners, etc.)Aluminum-alloy
Number of Cell (PCS)6*12
N/W(KG)15.5
Junction Box TypePass the TUV Certificate
Tolerance Wattage (e.g. + /-5%)±3%
Front Glass Thickness (mm)3.2
Surface Maximum Load Capacity5400Pa
Allowable Hail Load23m/s, 7.53g
Packing1*20' GP276pcs
1*40' GP644pcs
Temperature Coefficients of ISC(%)°C: 0.04
Temperature Coefficients of Voc(%)°C: -0.38
Temperature Coefficients of Pm(%)°C: -0.47
Temperature Coefficients of IM(%)°C: 0.04
Temperature Coefficients of VM(%)°C: -0.38
Temperature Range -40°C to +85°C

TUV, IEC, CE Certified photovoltaic /pv solar energy panel

 

Description:

1.high conversion efficiency

2.sealed with high transparency low-iron tempered glass, anti-aging EVA, high insulation TPT.

3.withstand high wind pressure and snow load.

4.with IEC61215/61730, TUV, CE, ISO

 

Warranty:

1) 5 years for material & workmanship;

2) 12 years for 90% power output;

3) 25 years for 80% power output.

* MOQ: 50pcs

* Delivery Time: 10-20 days after order confirmation

* Package: Wooden carton or pallet packing

 

Photovoltaic energy conversion is the key to electricity generation by solar panels.  This takes place when photons with sufficient energy excite charge carriers to higher energy levels.  The built-in asymmetry of the solar cells separates the carriers both in space and energy. The number of charge carriers collected at the external terminals determines the net current produced by the solar cell. The energy differences maintained between the charge carriers when extracted at the external terminals is converted to electrical voltage. The photovoltaic process is shown below:

PV Solar Energy Panel Mono TUV with IEC61215

As listed above, the power generation of the solar cell happens in three steps—photo generation of charge carriers, separation of charge carriers, and transport of the charge carriers from the point of generation to the external electrical connections—and all three steps must be performed well to produce an efficient solar cell.

The efficiency of a solar cell is defined as the ratio between the output of electrical power and the available power of the light falling onto the module.  More commonly, this is referred to as the conversion efficiency of the solar cell.  This is measured under a well-defined set of standard testing conditions.  The reason for this standardised testing is that efficiency is a key metric for the solar industry, and that both producers and researchers need to be able to compare efficiencies obtained using different technologies.  Modules are traded on efficiency ($/kWh), not number of units.  The efficiency of a module depends heavily on the quality of the material used in manufacturing, which means it may make economic sense to invest more in materials and processes higher in the value chain if they significantly increase efficiency.  Below typical solar cell characteristics are shown:

 PV Solar Energy Panel Mono TUV with IEC61215

Solar cells convert light energy into electrical energy either indirectly by first converting it into heat, or through a direct process known as the photovoltaic effect. The most common types of solar cells are based on the photovoltaic effect, which occurs when light falling on a two-layer semiconductor material produces a potential difference, or voltage, between the two layers. The voltage produced in the cell is capable of driving a current through an external electrical circuit that can be utilized to power electrical devices. This tutorial explores the basic concepts behind solar cell operation.

Q:How are solar cells manufactured?
Solar cells are manufactured through a process that involves several steps. First, raw materials such as silicon, which is the main component of solar cells, are purified and shaped into cylindrical ingots. These ingots are then sliced into thin wafers. Next, the wafers are treated with various chemicals to create a p-n junction, which is essential for the conversion of sunlight into electricity. This involves applying a layer of phosphorus to one side of the wafer, which creates the n-type layer, and a layer of boron to the other side, creating the p-type layer. Afterwards, the wafers are coated with an anti-reflective material to increase their efficiency in capturing sunlight. Metal contacts are then added to both sides of the wafer to collect the generated electricity. Finally, the wafers are assembled into modules or panels, where they are protected with a glass cover and encapsulated with a weather-resistant backsheet. These modules are then tested for quality assurance before they are ready for installation and use in solar energy systems.
Q:How do solar cells compare to other renewable energy sources?
Solar cells have several advantages over other renewable energy sources. They are highly versatile and can be installed in various locations, from rooftops to large-scale solar farms. Solar energy is abundant and accessible in most parts of the world, making it a reliable and widely available source of power. Additionally, solar cells have a low environmental impact, as they produce electricity without emitting greenhouse gases or other pollutants. Finally, solar energy is becoming increasingly cost-effective, with declining prices for solar panels and improved efficiency. However, solar cells do have limitations, such as dependence on sunlight availability and the need for large areas of land for large-scale installations. Nonetheless, their numerous advantages make solar cells a valuable and promising renewable energy option.
Q:What is the maximum efficiency possible for a solar cell?
The maximum efficiency possible for a solar cell, also known as the Shockley-Queisser limit, is approximately 33.7%.
Q:Can solar cells be used for powering outdoor signage?
Yes, solar cells can be used for powering outdoor signage. Solar cells convert sunlight into electricity, providing a sustainable and renewable energy source for outdoor signage systems. This eliminates the need for grid-connected electricity, reduces operational costs, and reduces the environmental impact.
Q:What are the safety considerations for installing solar cells?
Some safety considerations for installing solar cells include ensuring proper grounding and bonding to prevent electrical shock hazards, following manufacturer's guidelines for installation to prevent fire hazards, and using personal protective equipment when working at heights or handling equipment to prevent falls or injuries. Additionally, it is important to be aware of potential electrical and fire hazards during installation and maintenance, and to have a plan in place for emergency response.
Q:Can solar cells be used for powering remote weather monitoring stations?
Yes, solar cells can be used to power remote weather monitoring stations. Solar cells are a reliable and sustainable source of energy that can convert sunlight into electricity. They can be installed in remote areas where access to the power grid is limited or non-existent, providing a consistent power supply to operate weather monitoring equipment. Additionally, solar cells require minimal maintenance and have a long lifespan, making them a practical choice for powering remote weather monitoring stations.
Q:Can solar cells be used in telecommunications systems?
Yes, solar cells can be used in telecommunications systems. Solar cells can convert sunlight into electrical energy, which can then be used to power various components of telecommunications systems such as base stations, repeaters, and remote communication stations. This allows for more sustainable and independent operation of these systems, especially in remote areas where access to traditional power sources may be limited.
Q:What is a good introduction of solar cell?
A professional presentation will be very impressive.
Q:Can solar cells be used for powering traffic lights?
Yes, solar cells can be used for powering traffic lights. Solar panels can harness sunlight and convert it into electricity, providing a sustainable and renewable source of power for traffic lights. This eliminates the need for traditional electrical grid connections and reduces carbon emissions. Solar-powered traffic lights are increasingly being adopted as an eco-friendly and cost-effective solution in many locations around the world.
Q:How do solar cells perform in areas with high levels of salt spray?
Solar cells generally perform well in areas with high levels of salt spray. The materials used in solar cells are designed to be resistant to corrosion and degradation caused by salt exposure. However, regular cleaning and maintenance may be required to ensure optimal performance and prevent any potential buildup of salt deposits on the surface of the solar panels.
Our company is a High-tech enterprise, who is professional on manufacturing on solar photovoltaic products. We mainly produce the solar module and system. Our annual production capacity of solar module is 50MW.Meanwhile,we also undertake the design, installation and serviceonbothon-grid & off-grid system for home and power plant.

1. Manufacturer Overview

Location Zhejiang,China (Mainland)
Year Established 2006
Annual Output Value Above US$100 Million
Main Markets North America 2.90%
South America 25.60%
Eastern Europe 4.83%
Southeast Asia 9.18%
Africa 1.16%
Mid East 2.90%
Western Europe 19.81%
Central America 2.41%
Northern Europe 9.95%
Southern Europe 8.21%
South Asia 0.97%
Domestic Market 12.08%
Company Certifications ISO 9001:2008

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port Rotterdam,Hamburg
Export Percentage 81% - 90%
No.of Employees in Trade Department 6-10 People
Language Spoken: English, Chinese, Japanese, German, French
b)Factory Information  
Factory Size: 3,000-5,000 square meters
No. of Production Lines 5
Contract Manufacturing OEM Service Offered Design Service Offered Buyer Label Offered
Product Price Range Low and/or Average

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords