• Off-Grid Solar Inverter 10KVA-120KVA    Made In China High Intelligence System 1
  • Off-Grid Solar Inverter 10KVA-120KVA    Made In China High Intelligence System 2
  • Off-Grid Solar Inverter 10KVA-120KVA    Made In China High Intelligence System 3
Off-Grid Solar Inverter 10KVA-120KVA    Made In China High Intelligence

Off-Grid Solar Inverter 10KVA-120KVA Made In China High Intelligence

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Off-Grid Solar Inverter 10KVA-120KVA    

EA-GF series products use high speed DSP control unit, advanced high speed IGBT, MOSFET components, with pulse width modulation (SVPWM) technique disturbance type MPPT control, and double conversion system configuration. Under high-speed DSP system control, the system can quickly track panels to do high-power, load change and efficient multi-level control system, even if the mains input voltage and frequency suddenly change, over/under voltage, or power disturbances, it also can ensure provide the load with regulated voltage and frequency power. System has a reliable, environmentally friendly, high intelligence and other characteristics.

   

Villa, hotel, residential security, large base station, office, small manufacturing enterprises, computing centers, industrial automation equipment, network room, IDC data center, banking equipment, securities, health care, transportation, petrochemical and other solar systems. 
● High reliability:
※ High-speed micro-controller DSP digital control technology to achieve real-time control, parameter setting, data detection, self-test function to ensure high reliable operation of the system.
※ With high speed switching characteristic, high voltage, high current, low internal resistance, low dissipation IGBT, MOSFET power components based, to ensure system security and reliability.
● N+1 modularized MPPT tracking system:
※ Multipath MPPT control system access, independent input, operation. More suitable for roof project, to improve power generation efficiency of the panels.
● PV proactive power supply function:
After detects PV energy, system will enter MPPT status automatically, and it will also adjust the power distribution, priority in the use of PV energy.
● Intelligent battery management system:
※ In this system, AC rectifier 、MPPT controller controlled by intelligent data exchange and communication system,user can set the battery capacity by themselves;battery configuration can be set by the operator interface,system will automatically 
adjust the charging current ,charging voltage and charging mode.
※ In special cases,international technical engineer can adjust the charging rate and battery number according to the system configuration.
● Plenteous communication interface:
※ RS485、RS232 (standard),SNMP(Option).
※ Input dry contacts to switch on/off inverter, clear abnormal, EPO remotely. Output dry contacts singles for remote alarm. 
● Intelligent storage staggering features:
System with intelligent peak load shifting function, the user can set the appropriate time period electricity according to the local electricity policy, to achieve load shifting features directly in order to bring economic value;

 

   Model

10KVA

20KVA

30KVA

40KVA

50KVA

60KVA

80KVA

100KVA

120KVA

Rated Power(KW)

9KW

18KW

27KW

36KW

45KW

54KW

72KW

90KW

108KW

Rated Current (A)

15A

30A

45A

60A

76A

91A

133A

151A

182A

Output Power Factor

0.9

Rated Input Voltage

380V±20%

Rated Output Voltage

380V±1%

Battery Voltage

360Vdc

Battery Quantity

30 units, 12V

Working Mode

PV、AC replenish








PV Input

Max Voltage

750Vdc


Best Working Voltage(Vmp)

444-550Vdc


Float Charging Voltage

414V±1%


Max Efficiency

≥98%

Equalize Charging Voltage

428V±1%

Max Current

40A

60A

120A

180A

240A

300A

360A

PV Input Ways

1+1(reserved)

2+1(reserved)

3+1(reserved)

4+4(reserved)

5+3(reserved)

6+2(reserved)

MPPT Modular

1+1(reserved)

2+1(reserved)

3+1(reserved)

4+4(reserved)

5+3(reserved)

6+2(reserved)







AC Rectifier

Input Voltage Range

Three phases 380V ±20%(-10%~+20% can charge the battery)

Rated Frequency

50 Hz / 60Hz(can be set backstage)

Frequency Range

50Hz/60Hz±5Hz

Soft Start

0-100% 10s

Power Factor

0.8

Float Charging Voltage(20℃)

410V±1%

Max Voltage

415V±1%

Max Charging Current(A)

Battery Capacity Allowed

12

25

38

50

62

75

80

100

120











Inverter

Inverter Voltage

Three phases four lines +G 380Vac

Phase Voltage Setting

220-230-240Vac(can be set backstage)

Output Voltage Accuracy

±1%

Voltage Transients Range

±5%

Transient Recovery Time

20ms

Rated Frequency

50Hz/60Hz±1%

Frequency Tracking Range

50Hz/60Hz±3Hz

Crest Factor

3:1

Wave

Pure sine wave

THD

≤3%(linear load)

Voltage Unbalance Degree

±3%(100%unbalance load)

Overload

≥105%-110%: transfer to bypass 1 hours later, recover when reduce load

≥110%-125%: transfer to bypass10 min later, recover when reduce load

≥125%-150%: transfer to bypass 1 min later, recover when reduce load

≥150%: transfer to bypass 10 s later, recover when user confirmed

≥200%: shutdown immediately, recover when user confirmed

Short Circuit

System current limited, shut down immediately, boot by user

Max Efficiency %

≥90%

≥91%

≥92%

≥92%

≥93%

≥93%

≥93%

≥93%

≥93%

Bypass

Rated Voltage(V)

Three phases four lines+G 380Vac

Voltage Range

±20%

Rated Frequency(Hz)

50/60Hz±5Hz

Max Current

19

38

57

76

95

114

122

152

182



Battery

Management

End of Discharge

315VDC

Charging Current Setting

Factory setting is 0.15C10 ; user can set 0.05-0.3 C10

Charging Current Setting

Equalizing charging and float charging automatically transfer, automatic temperature compensation for battery (when battery detection not connected, default environment temperature)

Staggering Depth of Discharge Settings

1.85V-2.1V; can be set by user


Transfer

Time

Inverter/Bypass Transfer Time

0ms

Inverter/Bypass Transfer Time

0ms


Communication

Interface

Remote Control Input

Inverter on、off、abnormal clear、emergency power off

PC Monitoring Interface

RS232、RS485、SNMP (optional)

Dry Contact

Bypass input abnormal、rectifier input abnormal、system fault、system warning、

low battery、overload 、fans fault、generator ON/OFF

Environment

Operation Temperature

0-42℃

Max. Relative Humidity

90% (non condensed)

Max. Working Altitude

1000m (100 m higher, 1% derated; max 4000m)







Other

Cooling Way

Forced ventilation (Fans speed varies with the load)

Noise(1m varies with load and temperature )dB

65

Mean Time Between Failures(MTBF)

200,000 hours

Defend Grade(EN60529)

IP20

Power Line Input

Bottom

Standard

IEC62040-1-1、EN62109-1:2010, EN62109-2:2011

Dimensions(WxDxH)mm


600×700×1750

1000×800×1700

Packing Dimensions(WxDxH)mm


690×790 ×1850

1090×890 ×1800

Weight

250

280

300

320

345

360

400

420

445

·         Q. What is an UPS and What it is for ?

An uninterruptible power supply (UPS) is a device that allows your computer or telephone switch or critical equipement to keep running for at least a short time or longer time when the primary power source is lost. It also provides protection from power surges, spikes, brownouts, interference and other unwanted problems on the supported equipment.

·         Q. How long the UPS to run when power goes?

This can take 3 paths.
1.You can pick a UPS that is rated for pretty much the full VA you need so it will be running at 100% of capability and will thus last 'n' minutes.
2.You can pick a UPS that is rated at a much higher VA value than you really need so, for example, is running at 50% of capability and will thus last for longer than the UPS from option 1.
3You can use extra external battery packs to run for longer. If charging capability allows, the more and the bigger batteries you take with, the longer time UPS runs. 
or using a generator after about 6 hours, it will be more cost-effective, with a short runtime UPS to bridge the generator start-up gap.

Q:Can a solar inverter be used with a solar-powered healthcare system?
Yes, a solar inverter can be used with a solar-powered healthcare system. A solar inverter is an essential component of a solar power system as it converts the direct current (DC) produced by solar panels into alternating current (AC) that can be used to power various healthcare devices and equipment. This allows for the efficient and reliable operation of a solar-powered healthcare system, ensuring uninterrupted access to essential medical services even in remote or off-grid locations.
Q:Can a solar inverter be used in systems with different module tilts?
Yes, a solar inverter can be used in systems with different module tilts. Solar inverters are designed to convert the DC power generated by solar panels into AC power for use in the electrical grid or in the building. The module tilt refers to the angle at which the solar panels are installed, which can vary depending on factors like geographical location and specific installation requirements. Solar inverters are typically designed to be adaptable and can accommodate a wide range of module tilts, allowing for flexibility and optimization of solar energy generation.
Q:Can a solar inverter be used with energy storage systems?
Yes, a solar inverter can be used with energy storage systems. In fact, integrating an energy storage system with a solar inverter allows for the efficient utilization and management of solar-generated electricity. The inverter not only converts the DC power from the solar panels into AC power but also controls the charging and discharging of the energy storage system, ensuring optimal usage of stored energy.
Q:Can a solar inverter be used with different types of tracking algorithms?
Yes, a solar inverter can generally be used with different types of tracking algorithms. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) for use in homes or businesses. The tracking algorithms, such as single-axis or dual-axis tracking, are responsible for optimizing the output of solar panels by adjusting their tilt and orientation according to the sun's position. Solar inverters are typically compatible with various tracking algorithms, allowing flexibility in system design and maximizing energy generation.
Q:What is the role of power ramp rate control in a solar inverter?
The role of power ramp rate control in a solar inverter is to regulate the rate at which the power output of the solar system increases or decreases. This control is important to ensure the stability and reliability of the grid, as sudden changes in power generation can cause disruptions. By gradually ramping up or down the power output, the solar inverter can respond to grid conditions and prevent overloading or underutilization of the system, ultimately improving the overall performance and efficiency of the solar installation.
Q:What is the role of galvanic isolation in a solar inverter?
The role of galvanic isolation in a solar inverter is to provide electrical safety by separating the input and output circuits, preventing any direct electrical connection between them. This isolation helps protect the solar panels, the inverter, and the connected grid from potential electrical faults, such as ground faults or voltage surges. It also reduces the risk of electric shock and improves the overall performance and reliability of the solar inverter system.
Q:Can a solar inverter be used with a wind turbine?
Yes, a solar inverter can be used with a wind turbine. Both solar panels and wind turbines generate DC (direct current) electricity, which needs to be converted to AC (alternating current) to be used in most household appliances and the electrical grid. A solar inverter is designed to convert DC electricity from solar panels into AC electricity, and it can also be used to convert the DC electricity generated by a wind turbine into AC electricity. However, it is important to note that wind turbines usually generate higher voltage and fluctuating currents compared to solar panels, so the inverter used with a wind turbine may need to be specifically designed to handle these variations. Additionally, wind turbines often have their own specialized inverters that are optimized for their unique electrical characteristics.
Q:Are there any fire safety concerns associated with solar inverters?
Solar inverters do pose some fire safety concerns. Although they are not typically a fire hazard themselves, there are a few potential risks to be aware of. Firstly, if the solar inverter is installed incorrectly, it can cause electrical problems that may lead to a fire. To prevent this, it is essential to hire a qualified and certified professional who can ensure that all electrical connections are secure and meet the necessary standards. Secondly, if the solar inverter is located in an area that experiences high temperatures or excessive heat, there is a risk of overheating. Inverters generate heat as they convert direct current (DC) from solar panels into alternating current (AC) for use in homes or businesses. If the inverter is not adequately ventilated or is exposed to extreme heat, it can overheat and potentially ignite a fire. Furthermore, if the inverter is faulty or damaged, it can increase the risk of fire. Regular maintenance and inspections of the solar inverter can help identify any potential issues and ensure its safe operation. To address these fire safety concerns, it is crucial to adhere to proper installation guidelines, regularly inspect and maintain the inverter, and ensure it is in a well-ventilated location away from sources of excessive heat. It is also advisable to have a fire extinguisher nearby and establish a fire safety plan in case of emergencies.
Q:How do you choose the right output voltage for a solar inverter?
When choosing the right output voltage for a solar inverter, several factors should be considered. Firstly, it is essential to match the inverter's output voltage with the electrical system or grid requirements of your location. This typically involves understanding the voltage and frequency standards set by the utility company or relevant regulatory body. Additionally, the output voltage should align with the capacity and specifications of the solar panels or array being used. The inverter must be able to handle the maximum voltage and current produced by the solar panels to optimize power generation. Furthermore, the load requirements of the electrical devices or appliances that will connect to the inverter should be taken into account. It is crucial to ensure that the inverter's output voltage is compatible with the voltage needs of the equipment, avoiding any potential damage or inefficiencies. Overall, selecting the appropriate output voltage for a solar inverter involves considering the electrical system standards, solar array specifications, and load requirements to attain optimal performance and compatibility.
Q:What are the main components of a solar inverter?
The main components of a solar inverter include the converter, control circuitry, filters, and the inverter output. The converter converts the direct current (DC) power generated by solar panels into alternating current (AC) power. The control circuitry regulates and manages the power conversion process. Filters ensure the output power is clean and free from any noise or interference. The inverter output delivers the AC power to the electrical grid or to power the connected devices.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords