• 5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller System 1
  • 5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller System 2
  • 5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller System 3
  • 5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller System 4
  • 5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller System 5
  • 5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller System 6
5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller

5.5KW Off-grid Hybrid Solar Home Inverter With MPPT Charge Controller

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Item specifice

Output Power:
5500VA/5500W
Inveter Efficiency:
94
Output Voltage(V):
230Vac±5%
Input Voltage(V):
48V DC 170Vac ~ 280Vac(computer); 90Vac ~ 280Vac(Household appliance)
Output Current(A):
23
Output Frequency:
50Hz / 60Hz

Advantages

  • 110A PV MPPT input

  • Wide PV input voltage range

  • Overload/overtemperature/short circuit protection

  • Smart battery charger design to optimize battery performance

  •  Support mains/generator input

  • Adaptive lithium battery

  • Support maximum parallel machine (P model)

  • Multiple charging voltages, suitable for different batteries

  • Multiple working modes: mains priority, PV priority

Key Parameters

Output Type:Single, Pure Sine Wave

Type:DC/AC Inverters

Inverter Efficiency:94%

Place of Origin:China

Model Number:XN5548, XN5548-P

Input Voltage:48V DC

Output Voltage:230V AC ± 5%

Output Current:23A

Output Frequency:50Hz/60Hz

Size:472W*297H*133D mm

Certificate:CE/IEC/ISO/TUV

Warranty:5 years

Weight:10.5kg

5.5KW Off-grid Hybrid Solar Home Inverter WithMPPT Charge Controller

Battery Type:Lithium/Lead-acid

Rated Power:5500W

Waveform:Pure Sine Wave

Transfer Time:10ms

Maximum PV Array Power:6000W

Maximum Solar Charge Current:110A

AC Input Voltage:230V AC

Communication Port:RS232 / RS485

Packaging and delivery

Package Type:Standard Export Package

Supply Ability:10000 Unit/Units per Month

Lead Time

Quantity (units)  1 - 100     101 - 500    501 - 1000        > 1000

Lead time (days)    7                 14               21          To be negotiated

Customized packaging:(Min. order) 50000sets



Q:How does a solar inverter handle variations in solar panel tilt and orientation?
A solar inverter handles variations in solar panel tilt and orientation by adjusting the power output to maximize the energy harvest. It continuously monitors the performance of the solar panels and adjusts the voltage and current levels to optimize the conversion of sunlight into usable electricity. This allows the inverter to accommodate changes in tilt and orientation, ensuring the system operates at its highest efficiency regardless of the panel position.
Q:How does a solar inverter handle harmonic distortion?
A solar inverter handles harmonic distortion by using filters and control algorithms to reduce or eliminate the harmonics generated by the solar panels. These filters and algorithms help ensure that the electricity generated by the solar panels is clean and does not introduce any unwanted harmonics into the electrical grid.
Q:What is the maximum output voltage of a solar inverter?
The maximum output voltage of a solar inverter is typically determined by the specific model and specifications of the inverter being used. It can vary depending on factors such as the size and configuration of the solar array it is connected to. Generally, for residential solar installations, the maximum output voltage of a solar inverter can range from 230V to 240V for single-phase systems, and up to 400V for three-phase systems.
Q:What is the role of an isolation transformer in a solar inverter?
The role of an isolation transformer in a solar inverter is to provide electrical isolation and safety. It separates the input and output circuits, preventing any direct electrical connection between them. This isolation helps protect the inverter and its connected devices from electrical faults, such as ground faults, and reduces the risk of electric shock. Additionally, the isolation transformer can also help reduce common mode noise and provide better power quality by reducing the effects of electromagnetic interference.
Q:What is the difference between a transformerless inverter and a transformer-based inverter?
A transformerless inverter and a transformer-based inverter differ primarily in their design and functionality. A transformerless inverter, as the name suggests, does not include a transformer in its circuitry. Instead, it uses advanced semiconductor components, such as insulated-gate bipolar transistors (IGBTs), to convert the direct current (DC) power from a source like solar panels into alternating current (AC) power for use in homes or businesses. The absence of a transformer allows for a more compact and lightweight design, making transformerless inverters ideal for space-constrained installations. However, due to the lack of galvanic isolation, transformerless inverters may have slightly less electrical safety compared to transformer-based inverters. On the other hand, a transformer-based inverter incorporates a transformer as an integral part of its circuitry. This transformer serves multiple purposes, including galvanic isolation, voltage step-up or step-down, and impedance matching. Galvanic isolation is particularly important as it provides a barrier between the input and output of the inverter, offering enhanced electrical safety and protection against electrical shocks. The presence of a transformer also helps to stabilize the output voltage, making transformer-based inverters more suitable for applications with sensitive electronics or where grid synchronization is critical. In summary, while transformerless inverters offer compactness and lightweight design, transformer-based inverters provide better electrical safety and stability. The choice between the two depends on the specific application requirements, space availability, and the level of electrical safety desired.
Q:How does a solar inverter handle reactive power compensation?
A solar inverter handles reactive power compensation by integrating power factor correction techniques. It actively monitors the power factor of the connected load and adjusts the reactive power flow accordingly. This ensures that the inverter delivers a balanced combination of active (real) power and reactive power, resulting in improved system efficiency and reduced power losses.
Q:Can a solar inverter be used in areas with high dust and dirt accumulation?
Yes, a solar inverter can be used in areas with high dust and dirt accumulation, but it is important to take certain precautions and maintenance measures to ensure its proper functioning. Dust and dirt can accumulate on the surface of the solar panels, reducing their efficiency over time. This can also affect the performance of the solar inverter since it relies on the energy generated by the solar panels. To mitigate the impact of dust and dirt, regular cleaning of the solar panels is essential. This can be done by using a soft brush or sponge and mild detergent mixed with water. It is important not to use abrasive materials or excessive water pressure, as this can damage the panels. Additionally, installing the solar panels at an angle and positioning them to face the sun can help in reducing the accumulation of dust and dirt. Moreover, some solar inverters are designed with built-in protection against dust and dirt. These inverters usually have IP65 or higher ratings, which means they are dust-tight and can withstand water jets. Choosing such inverters can provide an added layer of protection against the adverse effects of dust and dirt accumulation. Overall, while a solar inverter can be used in areas with high dust and dirt accumulation, regular maintenance and proper cleaning of the solar panels are crucial to ensure optimal performance and longevity of the system.
Q:How does a solar inverter affect the value of a property?
A solar inverter can positively affect the value of a property by making it more attractive to potential buyers. It increases the property's energy efficiency and reduces electricity costs, which can be a significant factor for buyers looking for sustainable and cost-effective homes. Additionally, having a solar inverter installed demonstrates the property's commitment to renewable energy, which can be appealing to environmentally-conscious buyers.
Q:Can a solar inverter be used with solar-powered emergency backup systems?
Yes, a solar inverter can be used with solar-powered emergency backup systems. The solar inverter is an essential component that converts the DC (direct current) power generated by the solar panels into AC (alternating current) power, which can be used to power various electrical devices and appliances during emergencies.
Q:PV grid-connected inverter and independent inverter in the control of what is the difference
And you said that the independent inverter, said off-grid inverter it, this inverter can not access the mains, the components of the electricity through the off-grid inverter to the battery charge, the battery at night

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords